Third edition (March 1999)

This edition applies to Release 3 of CICS Transaction Server for OS/390, program number 5655-147, and to all subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

This edition replaces and makes obsolete the previous edition, SC33-1688-01. The technical changes for this edition are summarized under "Summary of changes" and are indicated by a vertical bar to the left of a change.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments, but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development, Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1989, 1999. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Notices .. ix
Programming interface information x
Trademarks .. x

Preface
- What this book is about .. xi
- Who this book is for .. xi
- What you need to know to understand this book xi
- How to use this book .. xi
- What this book does not cover xi

Bibliography
- CICS Transaction Server for OS/390 xiii
- CICS books for CICS Transaction Server for OS/390 xiii
- CICSPlex SM books for CICS Transaction Server for OS/390 .. xiv
- Other CICS books ... xiv
- Books from related libraries .. xiv
- MVS ... xiv
- IMS ... xiv
- Systems Network Architecture xv
- Systems Application Architecture xv
- SQL .. xv
- Other related books .. xv
- Determining if a publication is current xv

Summary of changes
- CICS Transaction Server for OS/390 for release 3 xvii
- CICS Transaction Server for OS/390 for release 2 xvii
- CICS Transaction Server for OS/390 for release 1 xvii

Chapter 1. CICS API commands
- Command format ... 1
- CICS syntax notation used in this book 1
- Argument values ... 2
- Restrictions .. 5
- CICS-value data areas (cvdas) 5
- LENGTH options ... 5
- NOHANDLE option ... 5
- RESP and RESP2 options ... 5
- Possible ABEND AICA timeout 6
- CICS interface to JES ... 6
- Using the CICS interface to JES 8
- Commands by function ... 9
- ABEND ... 13
- ADDRESS ... 14
- ADDRESS SET .. 16
- ALLOCATE (APPC) .. 17
- ALLOCATE (LUTYPE6.1) ... 19
- ALLOCATE (MRO) ... 21
- ASKTIME ... 22
- ASSIGN ... 23
- BIF DEEDIT ... 31
- BUILD ATTACH (LUTYPE6.1) 32
- BUILD ATTACH (MRO) .. 34
- CANCEL ... 36
- CHANGE PASSWORD .. 38
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHANGE TASK</td>
<td>39</td>
</tr>
<tr>
<td>CONNECT PROCESS</td>
<td>40</td>
</tr>
<tr>
<td>CONVERSE (VTAM default)</td>
<td>42</td>
</tr>
<tr>
<td>CONVERSE (APPC)</td>
<td>42</td>
</tr>
<tr>
<td>CONVERSE (LUTYPE2/LUTYPE3)</td>
<td>43</td>
</tr>
<tr>
<td>CONVERSE (LUTYPE4)</td>
<td>43</td>
</tr>
<tr>
<td>CONVERSE (LUTYPE6.1)</td>
<td>44</td>
</tr>
<tr>
<td>CONVERSE (SCS)</td>
<td>44</td>
</tr>
<tr>
<td>CONVERSE (3270 logical)</td>
<td>45</td>
</tr>
<tr>
<td>CONVERSE (3600-3601)</td>
<td>45</td>
</tr>
<tr>
<td>CONVERSE (3600-3614)</td>
<td>46</td>
</tr>
<tr>
<td>CONVERSE (3650 interpreter)</td>
<td>46</td>
</tr>
<tr>
<td>CONVERSE (3650-3270)</td>
<td>47</td>
</tr>
<tr>
<td>CONVERSE (3650-3653)</td>
<td>47</td>
</tr>
<tr>
<td>CONVERSE (3650-3680)</td>
<td>48</td>
</tr>
<tr>
<td>CONVERSE (3767)</td>
<td>48</td>
</tr>
<tr>
<td>CONVERSE (3770)</td>
<td>49</td>
</tr>
<tr>
<td>CONVERSE (3790 full-function or inquiry)</td>
<td>49</td>
</tr>
<tr>
<td>CONVERSE (3790 3270-display)</td>
<td>50</td>
</tr>
<tr>
<td>CONVERSE (non-VTAM default)</td>
<td>54</td>
</tr>
<tr>
<td>CONVERSE (MRO)</td>
<td>54</td>
</tr>
<tr>
<td>CONVERSE (System/3)</td>
<td>55</td>
</tr>
<tr>
<td>CONVERSE (System/7)</td>
<td>55</td>
</tr>
<tr>
<td>CONVERSE (2260)</td>
<td>56</td>
</tr>
<tr>
<td>CONVERSE (2741)</td>
<td>57</td>
</tr>
<tr>
<td>CONVERSE (2770)</td>
<td>58</td>
</tr>
<tr>
<td>CONVERSE (2780)</td>
<td>58</td>
</tr>
<tr>
<td>CONVERSE (3270 display)</td>
<td>59</td>
</tr>
<tr>
<td>CONVERSE (3600 BTAM)</td>
<td>59</td>
</tr>
<tr>
<td>CONVERSE (3735)</td>
<td>61</td>
</tr>
<tr>
<td>CONVERSE (3740)</td>
<td>61</td>
</tr>
<tr>
<td>DEFINE COUNTER</td>
<td>65</td>
</tr>
<tr>
<td>DELAY</td>
<td>67</td>
</tr>
<tr>
<td>DELETE</td>
<td>69</td>
</tr>
<tr>
<td>DELETE COUNTER</td>
<td>74</td>
</tr>
<tr>
<td>DELEQ TD</td>
<td>76</td>
</tr>
<tr>
<td>DELEQ TS</td>
<td>77</td>
</tr>
<tr>
<td>DEQ</td>
<td>78</td>
</tr>
<tr>
<td>DOCUMENT CREATE</td>
<td>80</td>
</tr>
<tr>
<td>DOCUMENT INSERT</td>
<td>82</td>
</tr>
<tr>
<td>DOCUMENT RETRIEVE</td>
<td>84</td>
</tr>
<tr>
<td>DOCUMENT SET</td>
<td>85</td>
</tr>
<tr>
<td>DUMP TRANSACTION</td>
<td>86</td>
</tr>
<tr>
<td>ENDBR</td>
<td>89</td>
</tr>
<tr>
<td>ENQ</td>
<td>91</td>
</tr>
<tr>
<td>ENTER TRACENUM</td>
<td>93</td>
</tr>
<tr>
<td>EXTRACT ATTACH (LUTYPE6.1)</td>
<td>95</td>
</tr>
<tr>
<td>EXTRACT ATTACH (MRO)</td>
<td>97</td>
</tr>
<tr>
<td>EXTRACT ATTRIBUTES (APPC)</td>
<td>99</td>
</tr>
<tr>
<td>EXTRACT ATTRIBUTES (MRO)</td>
<td>100</td>
</tr>
<tr>
<td>EXTRACT CERTIFICATE</td>
<td>101</td>
</tr>
<tr>
<td>EXTRACT LOGONMSG</td>
<td>103</td>
</tr>
<tr>
<td>EXTRACT PROCESS</td>
<td>104</td>
</tr>
<tr>
<td>EXTRACT TCP/IP</td>
<td>106</td>
</tr>
<tr>
<td>EXTRACT TCT</td>
<td>108</td>
</tr>
<tr>
<td>FORMATTIME</td>
<td>109</td>
</tr>
<tr>
<td>FREE</td>
<td>112</td>
</tr>
<tr>
<td>FREE (APPC)</td>
<td>113</td>
</tr>
<tr>
<td>FREE (LUTYPE6.1)</td>
<td>114</td>
</tr>
<tr>
<td>FREE (MRO)</td>
<td>115</td>
</tr>
</tbody>
</table>
READ ... 205
READNEXT ... 212
READPREV ... 219
READQ TD .. 225
READQ TS .. 227
RECEIVE (VTAM default) ... 229
RECEIVE (APPC) .. 229
RECEIVE (LUTYPE2/LUTYPE3) 230
RECEIVE (LUTYPE4) .. 230
RECEIVE (LUTYPE6.1) ... 231
RECEIVE (3270 logical) .. 231
RECEIVE (3600 pipeline) .. 232
RECEIVE (3600-3601) ... 232
RECEIVE (3600-3614) ... 233
RECEIVE (3650) ... 233
RECEIVE (3650-3270) ... 234
RECEIVE (3650 3270-display) 234
RECEIVE (non-VTAM default) 235
RECEIVE (MRO) .. 238
RECEIVE (System/3) .. 239
RECEIVE (System/7) .. 239
RECEIVE (2260) ... 240
RECEIVE (2741) ... 240
RECEIVE (2980) ... 241
RECEIVE (3270 display) ... 243
RECEIVE (3600 BTAM) ... 243
RECEIVE (3735) ... 244
RECEIVE (3740) ... 244
RECEIVE (3790 3270-display) 245
RECEIVE (APPC) .. 229
RECEIVE (LUTYPE4) .. 272
RECEIVE (LUTYPE6.1) ... 273
RECEIVE (SCS) ... 273
RECEIVE (3270 logical) .. 274
RECEIVE (3600 pipeline) .. 274
RECEIVE (3600-3601) ... 275
RECEIVE (3600-3614) ... 275
RECEIVE (3650 interpreter) 276
RECEIVE (3650-3270) ... 276
RECEIVE (3650-3653) ... 277
RECEIVE (3650-3680) ... 277
RECEIVE (3767) ... 278
RECEIVE (3770) ... 278
RECEIVE (3790 full-function or inquiry) 279
RECEIVE (3790 SCS) ... 279
RECEIVE (3790 3270-display) 280
RECEIVE (3790 3270-printer) 280
SEND (VTAM default) ... 271
SEND (APPC) .. 271
SEND (LUTYPE2/LUTYPE3) ... 272
SEND (LUTYPE4) .. 272
SEND (LUTYPE6.1) ... 273
SEND (SCS) ... 273
SEND (3270 logical) ... 274
SEND (3600 pipeline) .. 274
SEND (3600-3601) .. 275
SEND (3600-3614) .. 275
SEND (3650 interpreter) ... 276
SEND (3650-3270) .. 276
SEND (3650-3653) .. 277
SEND (3650-3680) .. 277
SEND (3767) ... 278
SEND (3770) ... 278
SEND (3790 full-function or inquiry) 279
SEND (3790 SCS) ... 279
SEND (3790 3270-display) 280
SEND (3790 3270-printer) 280
SEND (non-VTAM default) ... 284
SEND (MRO) .. 284
SEND (System/3) .. 285
SEND (System/7) .. 285
SEND (2260) ... 286
SEND (2741) ... 286
SEND (2980) ... 287
SEND (3270 display) .. 287
SEND (3600 BTAM) .. 288
SEND (3735) ... 288
SEND (3740) ... 289
SEND CONTROL .. 292
SEND MAP ... 295
SEND MAP MAPPINGDEV .. 300
SEND PAGE ... 302
SEND PARTNSET .. 304
SEND TEXT .. 305
SEND TEXT MAPPED ... 309
SEND TEXT NOEDIT ... 311
SIGNOFF .. 314
SIGNON .. 315
SPOOLCLOSE ... 317
SPOOLOPEN INPUT ... 319
SPOOLOPEN OUTPUT .. 321
SPOOLREAD ... 324
SPOOLWRITE ... 326
START ... 328
START ATTACH .. 333
START BREXIT ... 334
STARTBR .. 336
SUSPEND .. 340
SYNCPOINT .. 341
SYNCPOINT ROLLBACK .. 342
UNLOCK .. 343
UPDATE COUNTER .. 345
VERIFY PASSWORD .. 347
WAIT CONVID (APPC) ... 349
WAIT EVENT .. 350
WAIT EXTERNAL ... 351
WAIT JOURNALNAME ... 353
WAIT JOURNALNUM ... 355
WAIT SIGNAL ... 356
WAIT TERMINAL .. 357
WAITCICS .. 358
WEB ENDBROWSE HTTPHEADER 360
WEB EXTRACT .. 361
WEB READ .. 362
WEB READNEXT .. 363
WEB RECEIVE ... 364
WEB RETRIEVE ... 366
WEB SEND .. 367
WEB STARTBROWSE ... 368
WEB WRITE .. 369
WRITE .. 370
WRITE JOURNALNAME ... 375
WRITE JOURNALNUM .. 377
WRITE OPERATOR .. 378
WRITEQ TD ... 380
WRITEQ TS .. 382
XCTL ... 385
Appendix A. EXEC interface block ... 387
EIB fields .. 387
Appendix B. Codes returned by ASSIGN 397
ASSIGN TERMCODE .. 397
ASSIGN FCI .. 397
Appendix C. Translated code for CICS commands 399
COBOL ... 399
C ... 399
PL/I .. 399
Assembler language .. 400
Appendix D. Terminal control ... 403
Commands and options for terminals and logical units 403
TCAM-supported terminals and logical units 404
BTAM programmable terminals .. 404
Teletypewriter programming .. 405
Display device operations .. 406
Appendix E. SAA Resource Recovery .. 409
SRRCMT ... 409
SRRBACK ... 409
Appendix F. Common Programming Interface Communications (CPI Communications) ... 411
CPI Communications language interfaces 411
Appendix G. API restrictions for distributed program link 413
Summary of the restricted API commands 413
List of API commands .. 413
Appendix H. CVDA numeric values ... 417
Appendix I. National language codes .. 419
Appendix J. BMS-related constants ... 421
Magnetic slot reader (MSR) control value constants, DFHMSRCA 423
MSR control byte values ... 423
Attention identifier constants, DFHAID 425
Appendix K. BMS macro summary ... 427
Mapset, map, and field definition .. 427
Partition set definition .. 428
DFHMDF ... 430
DFHMDI .. 437
DFHMSD .. 443
DFHPDI .. 450
DFHPSDL .. 451
Index .. 453
Sending your comments to IBM .. 455
This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact IBM United Kingdom Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or any equivalent agreement between us.
Programming interface information

This book is intended to help you write application programs using EXEC CICS commands that obtain the services of CICS.

This book documents General-use Programming Interface and Associated Guidance Information provided by CICS.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, or other countries, or both:

<table>
<thead>
<tr>
<th>AFP</th>
<th>DB2</th>
<th>MVS/ESA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BookManager</td>
<td>DFSMS</td>
<td>RACF</td>
</tr>
<tr>
<td>CICS</td>
<td>DFSMS/MVS</td>
<td>System/370</td>
</tr>
<tr>
<td>CICS/ESA</td>
<td>IBM</td>
<td>VTAM</td>
</tr>
<tr>
<td>DATABASE 2</td>
<td>IMS</td>
<td></td>
</tr>
</tbody>
</table>

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.
Preface

What this book is about

This book describes the CICS Transaction Server for OS/390 EXEC application programming interface. It contains reference information needed to prepare COBOL, C, PL/I, and assembler-language application programs, using EXEC CICS commands, to be executed under CICS. Guidance information is in the CICS Application Programming Guide. For information about debugging CICS applications, see the CICS Problem Determination Guide.

Who this book is for

The book is intended primarily for use by application programmers, but will also be useful to system programmers and systems analysts.

What you need to know to understand this book

We assume that you have some experience in writing programs in COBOL, C, PL/I, or S370 assembler language. The CICS Application Programming Primer (VS COBOL II) and the CICS Application Programming Guide will help you to design and write CICS applications using the commands described in this book.

How to use this book

This book is for reference. Each of the commands has a standard format, as follows:

- The syntax of the command
- A description of what the command does
- An alphabetical list of the options and their functions
- An alphabetical list of conditions, and their causes, that can occur during execution of a command.

What this book does not cover

The EXEC CICS commands for system programming; that is COLLECT, CREATE, DISABLE, ENABLE, INQUIRE, PERFORM, RESYNC, and SET are not covered in this book. You will find them in the CICS System Programming Reference.

The EXEC CICS FEPI commands available for use with the CICS Front End Programming Interface feature are not discussed in this book, but in the CICS/ESA Front End Programming Interface User's Guide.

The EXEC CICS commands available for use with CICS business transaction services (BTS) are not discussed in this book. You will find a full description in the CICS Business Transaction Services manual.

The CICS C++ OO programming interface is not described in this book. It is defined in the CICS C++ OO Class Libraries manual.

The CICS Java programming interface is not described here, it is defined in Javadoc HTML provided in dfjcics_docs.zip in the OS/390 UNIX System Services HFS, in the /usr/lpp/cicsts/cicsts13 directory.

© Copyright IBM Corp. 1989, 1999
Bibliography

CICS Transaction Server for OS/390

CICS Transaction Server for OS/390: Planning for Installation GC33-1789
CICS Transaction Server for OS/390 Release Guide GC34-5352
CICS Transaction Server for OS/390 Migration Guide GC34-5353
CICS Transaction Server for OS/390 Installation Guide GC33-1681
CICS Transaction Server for OS/390 Program Directory GI10-2506
CICS Transaction Server for OS/390 Licensed Program Specification GC33-1707

CICS books for CICS Transaction Server for OS/390

General
CICS Master Index SC33-1704
CICS User's Handbook SX33-6104
CICS Transaction Server for OS/390 Glossary (softcopy only) GC33-1705

Administration
CICS System Definition Guide SC33-1682
CICS Customization Guide SC33-1683
CICS Resource Definition Guide SC33-1684
CICS Operations and Utilities Guide SC33-1685
CICS Supplied Transactions SC33-1686

Programming
CICS Application Programming Guide SC33-1687
CICS Application Programming Reference SC33-1688
CICS System Programming Reference SC33-1689
CICS Front End Programming Interface User's Guide SC33-1692
CICS C++ OO Class Libraries SC34-5455
CICS Distributed Transaction Programming Guide SC33-1691
CICS Business Transaction Services SC34-5268

Diagnosis
CICS Problem Determination Guide GC33-1693
CICS Messages and Codes GC33-1694
CICS Diagnosis Reference LY33-6088
CICS Data Areas LY33-6089
CICS Trace Entries SC34-5446
CICS Supplementary Data Areas LY33-6090

Communication
CICS Intercommunication Guide SC33-1695
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697
CICS External Interfaces Guide SC33-1944
CICS Internet Guide SC34-5445

Special topics
CICS Recovery and Restart Guide SC33-1698
CICS Performance Guide SC33-1699
CICS IMS Database Control Guide SC33-1700
CICS RACF Security Guide SC33-1701
CICS Shared Data Tables Guide SC33-1702
CICS Transaction Affinities Utility Guide SC33-1777
CICS DB2 Guide SC33-1939

© Copyright IBM Corp. 1989, 1999
CICSplex SM books for CICS Transaction Server for OS/390

General
- CICSPlex SM Master Index SC33-1812
- CICSPlex SM Concepts and Planning GC33-0786
- CICSPlex SM User Interface Guide SC33-0788
- CICSPlex SM View Commands Reference Summary SX33-6099

Administration and Management
- CICSPlex SM Administration SC34-5401
- CICSPlex SM Operations Views Reference SC33-0789
- CICSPlex SM Monitor Views Reference SC34-5402
- CICSPlex SM Managing Workloads SC33-1807
- CICSPlex SM Managing Resource Usage SC33-1808
- CICSPlex SM Managing Business Applications SC33-1809

Programming
- CICSPlex SM Application Programming Guide SC34-5457
- CICSPlex SM Application Programming Reference SC34-5458

Diagnosis
- CICSPlex SM Resource Tables Reference SC33-1220
- CICSPlex SM Messages and Codes GC33-0790
- CICSPlex SM Problem Determination GC33-0791

Other CICS books
- CICS Application Programming Primer (VS COBOL II) SC33-0674
- CICS Application Migration Aid Guide SC33-0768
- CICS Family: API Structure SC33-1007
- CICS Family: Client/Server Programming SC33-1435
- CICS Family: General Information GC33-0155
- CICS 4.1 Sample Applications Guide SC33-1173
- CICS/ESA 3.3 XRF Guide SC33-0661

If you have any questions about the CICS Transaction Server for OS/390 library, see CICS Transaction Server for OS/390: Planning for Installation which discusses both hardcopy and softcopy books and the ways that the books can be ordered.

Books from related libraries

MVS

See the following books:
- OS/390 MVS Initialization and Tuning Guide
- OS/390 MVS Initialization and Tuning Reference
- OS/390 MVS JCL User's Guide
- OS/390 MVS System Commands

IMS

For information about IMS, see the following books. If you use the CICS-DL/I interface, see one of the following IMS books:
- IMS/VS Version 2 Application Programming for CICS/OS/VS Users, SC26-4177
- IMS Application Programming: Design Guide, SC26-4279
- IMS Application Programming: EXEC DLI Commands manual, SC26-4280

These books contain information about IMS application programming for CICS users, and tell you how to write online or batch programs that use the EXEC DLI interface or the DL/I CALL interface with the DL/I interface block (DIB).

Note: The EXEC DLI interface is no longer documented in the CICS Application Programming Reference.
Systems Network Architecture

See the following Systems Network Architecture (SNA) book for further information about SNA:

Sessions between Logical Units, GC20-1868.

Systems Application Architecture

See the following Systems Application Architecture (SAA) for further information about SAA:

SAA Common Programming Interface Communications Reference, SC26-4399.

SQL

For information about executing SQL in a CICS application program see the following books:

IBM DATABASE 2 Application Programming Guide for CICS Users, SC26-4080

IBM DATABASE 2 Reference, SC26-4078.

Other related books

You may also want to refer to the following IBM books:

Distributed Processing Programming Executive/Distributed Presentation Services (DPPX/DPS):

DPPX/Distributed Presentation Services Version 2 System Programming Guide, SC33-0117

VS COBOL II Application Programming Guide, SC26-4045

An Introduction to the IBM 3270 Information Display System, GA27-2739

3274 Control Unit Reference Summary, GX20-1878.

Component Description: IBM 2721 Portable Audio Terminal, GA27-3029.

IBM 2780 Data Transmission Terminal Component Description, GA27-3035

CICS/ESE 3.3 IBM 3270 Data Stream Device Guide, SC33-0232

IBM 3270 Data Stream Programmer’s Reference, GA23-0059

IBM 4700/3600/3630 Guide, SC33-0233

Determining if a publication is current

IBM regularly updates its publications with new and changed information. When first published, both hardcopy and BookManager softcopy versions of a publication are usually in step. However, due to the time required to print and distribute hardcopy books, the BookManager version is more likely to have had last-minute changes made to it before publication.

Subsequent updates will probably be available in softcopy before they are available in hardcopy. This means that at any time from the availability of a release, softcopy versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the *Transaction Processing and Data Collection Kit* CD-ROM, SK2T-0730-xx. Each reissue of the collection kit is indicated by an updated order number suffix (the -xx part). For example,
collection kit SK2T-0730-06 is more up-to-date than SK2T-0730-05. The collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a “#” character) to the left of the changes.
Summary of changes

CICS Transaction Server for OS/390 for release 3

This book includes information about the new or enhanced facilities introduced by the CICS element of CICS Transaction Server for OS/390 for release 3. Technical changes are shown by vertical bars in the left hand margin.

A new option, BREXIT, has been added to the START command to define a 3270 Bridge exit. To simplify use of the START command, it is now documented as 3 variations: START ATTACH, START BREXIT and the original Interval Control START. This change shows the limited number of options that you can use with BREXIT and ATTACH.

New DOCUMENT and WEB commands have been added for use with CICS Web support.

EXTRACT TCPIP has been added to support the CICS TCP/IP listener.

EXTRACT CERTIFICATE has been added to support the Secure Sockets Layer (SSL).

If the name specified in the RESOURCE option of an ENQ or DEQ command matches the name of an installed ENQMDOEL resource, the ENQSCOPE attribute of the resource definition controls the scope of the ENQ or DEQ command, that is, whether it has local or sysplex scope. The syntax of the ENQ or DEQ command is not changed.

Changes have been made to the PICIN and PICOUT options of the BMS macro DFHMDF to support multi-character currency symbols, such as EUR.

CICS Transaction Server for OS/390 for release 2

This book includes information about the new or enhanced facilities introduced by the CICS element of CICS Transaction Server for OS/390 for release 2. Technical changes are shown by vertical bars in the left hand margin.

A new keyword, BRIDGE, has been added to ASSIGN to support the 3270 bridge environment.

The BMS map definition macros are enhanced to build an Application Data Structure (ADS) descriptor record in the mapset. See Appendix K, “BMS macro summary” on page 427.

RECEIVE MAP MAPPINGDEV and SEND MAP MAPPINGDEV have been added to allow mapping of 3270 datastreams without a terminal input/output operation.

CICS Transaction Server for OS/390 for release 1

There are new commands, WAIT JOURNALNAME and WRITE JOURNALNAME, that supersede WAIT JOURNALNUM and WRITE JOURNALNUM.

journalnum(01) no longer signifies the system log but journalname(dfhlog) should be used for this purpose.

New RLS keywords CONSISTENT, REPEATABLE, and UNCOMMITTED, have been added to the read commands.

New options UPDATE and TOKEN have been added to READNEXT and READPREV.

New conditions LOCKED and RECORDBUSY added to file control commands.
Chapter 1. CICS API commands

This book shows the syntax of each command, describes the purpose and format of each command and its options, and gives a list of the conditions that can arise during the execution of a command.

Note: The INQUIRE and SET commands of the system programming interface (SPI) are primarily for the use of the system programmer; they are not described in this book. For details of these commands, refer to the CICS System Programming Reference.

For information about translating the commands, see the CICS Application Programming Guide for translator options, and the CICS System Definition Guide for the JCL.

Command format

The general format of a CICS command is EXECUTE CICS (or EXEC CICS) followed by the name of the required command, and possibly by one or more options, as follows:

```
EXEC CICS command option(arg)....
```

where:

- **command** describes the operation required (for example, READ).
- **option** describes any of the many optional facilities available with each function. Some options are followed by an argument in parentheses. You can write options (including those that require arguments) in any order.
- **arg** (short for argument) is a value such as "data-value" or "name". A "data-value" can be a constant, this means that an argument that sends data to CICS is generally a "data-value". An argument that receives data from CICS must be a "data-area".

Some arguments described as "data-area" can both send and receive data. In these cases, you must ensure that the "data-area" is not in protected storage.

An example of a CICS command is as follows:

```
EXEC CICS READ
   FILE('FILEA')
   INTO(FILEA)
   RIDFLD(KEYNUM)
   UPDATE
```

You must add the appropriate end-of-command delimiter; see “CICS syntax notation used in this book.”

CICS syntax notation used in this book

In the CICS books, CICS commands are presented in a standard way.

The “EXEC CICS” that always precedes each command's keyword is not included; nor is the “END-EXEC” statement used in COBOL or the semicolon (;) used in PL/I and C that you must code at the end of each CICS command. In the C language, a null character can be used as an end-of-string marker, but CICS does not recognize this; you must therefore never have a comma or period followed by a space (X'40') in the middle of a coding line.

You interpret the syntax by following the arrows from left to right. The conventions are:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A set of alternatives—one of which you must code.</td>
</tr>
<tr>
<td></td>
<td>A set of alternatives—one of which you must code. You may code more than one of them, in any sequence.</td>
</tr>
<tr>
<td></td>
<td>A set of alternatives—one of which you may code.</td>
</tr>
<tr>
<td></td>
<td>A set of alternatives—any number (including none) of which you may code once, in any sequence.</td>
</tr>
<tr>
<td></td>
<td>Alternatives where A is the default.</td>
</tr>
<tr>
<td></td>
<td>Use with the named section in place of its name.</td>
</tr>
<tr>
<td></td>
<td>Code exactly as shown.</td>
</tr>
<tr>
<td></td>
<td>Code your own text, as appropriate (for example, name).</td>
</tr>
</tbody>
</table>

For example, with READ FILE(filename) you must code READ FILE and () unchanged, but are free to code any valid text string to mean the name of the file.
Argument values

The parenthesized argument values that follow options in a CICS command are specified as follows:

- data-value
- data-area
- cvda (CICS-value data area)
- ptr-value
- ptr-ref
- name
- label
- hhmmss
- filename
- systemname

Data-areas and Data-values

Data-areas and data-values are the basic argument types. The difference between them is the direction in which information flows when a task executes a command. A data-value is always, and exclusively a sender; it conveys data to CICS that CICS uses to process the command. A data-area is a receiver; CICS uses it to return information to the caller. Note that a data-area can also be a sender, for example when the data to be conveyed to CICS is variable length (as in FROM), or where a field is used both for input and output.

COBOL argument values

The argument values can be replaced as follows:

- "data-value" can be replaced by any COBOL data name of the correct data type for the argument, or by a constant that can be converted to the correct type for the argument. The data type can be specified as one of the following:
 - Halfword binary — PIC S9(4) COMP
 - Fullword binary — PIC S9(8) COMP
 - Doubleword unsigned binary — PIC 9(18) COMP
 - Character string — PIC X(n) where “n” is the number of bytes

- "data-area" can be replaced by any COBOL data name of the correct data type for the argument. The data type can be specified as one of the following:
 - Halfword binary — PIC S9(4) COMP
 - Fullword binary — PIC S9(8) COMP
 - Doubleword unsigned binary — PIC 9(18) COMP
 - Character string — PIC X(n) where “n” is the number of bytes

Where the data type is unspecified, “data-area” can refer to an elementary or group item.

- “cvda” is described in “CICS-value data areas (cvdas)” on page 5.
- “ptr-value” can be replaced by the name of any base locator for linkage (BLL) cell, or by any COBOL data name that contains a copy of such a pointer in a BLL cell.
- “ptr-ref” can be replaced by the name of any BLL cell. In VS COBOL II, you can replace “ptr-ref” with a pointer variable or an ADDRESS special register.
- “name” can be replaced by either of the following:
 - A character string in single quotation marks (that is, a nonnumeric literal). If this is shorter than the required length, it is padded with blanks.
 - A COBOL data area with a length equal to the length required for the name. The value in “data-area” is the name to be used by the argument. If “data-area” is shorter than the required length, the excess characters are undefined.

“filename”, as used in FILE(filename), specifies the name of the file. It has 1–8 characters from A–Z, 0–9, $, @, and #.

“systemname”, as used in SYSID(systemname), specifies the name of the system the request is directed to. It has 1–4 characters from A–Z, 0–9, $, @, and #.

- “label” can be replaced by any COBOL paragraph name or a section name.
- “hhmmss” can be replaced by a decimal constant or by a data name of the form PIC S9(7) COMP-3. The value must be of the form 0HHMMSS+ where:

 | HH represents hours from 00 through 99. |
 | MM represents minutes from 00 through 59. |
 | SS represents seconds from 00 through 59. |

In OS/VS COBOL, you must code the LENGTH options. In VS COBOL II, there is no need to code the LENGTH option unless you want the program to read or write data of a length different from that of the referenced variable.

C argument values

The argument values can be replaced as follows:

- “data-value” can be replaced by any C expression that can be converted to the correct data type for the argument. The data type can be specified as one of the following:
 - Halfword binary — short int
 - Fullword binary — long int
 - Doubleword binary — char[8]
 - Character string — char[n] where “n” is the number of bytes

“data-value” includes “data-area” as a subset.

- “data-area” can be replaced by any C data reference that has the correct data type for the argument. The data type can be specified as one of the following:
 - Halfword binary — short int
 - Fullword binary — long int
 - Doubleword binary — char[8]
Many commands involve the transfer of data between the application program and CICS.

In most cases, the LENGTH option must be specified if SET is used; the syntax of each command and its associated options show whether or not this rule applies.

PL/I argument values

The argument values can be replaced as follows:

- **"data-value"** can be replaced by any PL/I expression that can be converted to the correct data type for the argument. The data type can be specified as one of the following:
 - Halfword binary — FIXED BIN(15)
 - Fullword binary — FIXED BIN(31)
 - Doubleword binary — CHAR (8)
 - Character string — CHAR(n) where “n” is the number of bytes

- **"data-area"** can be replaced by any PL/I data reference that has the correct data type for the argument. The data type can be specified as one of the following:
 - Halfword binary — FIXED BIN(15)
 - Fullword binary — FIXED BIN(31)
 - Doubleword binary — CHAR (8)
 - Character string — CHAR(n) where “n” is the number of bytes

If the data type is unspecified, “data-area” can refer to an element, array, or structure; for example, FROM(P->STRUCTURE) LENGTH(LNG). The reference must be to connected storage.

The data area must also have the correct PL/I alignment attribute: ALIGNED for binary items, and UNALIGNED for strings.

If you use a varying data string without an explicit length, the data passed begins with two length bytes, and its length is the maximum length declared for the string. If you explicitly specify a length in the command, the data passed has this length; that is, the two length bytes followed by data up to the length you specified.

- **"cvda"** is described in “CICS-value data areas (cvdas)” on page 5.

- **"ptr-value"** (which includes “ptr-ref” as a subset) can be replaced by any PL/I expression that can be converted to POINTER.

- **"ptr-ref"** can be replaced by any PL/I reference of type POINTER ALIGNED.

- **"name"** can be replaced by either of the following:
 - A character string in single quotation marks (that is, a literal constant).
 - A PL/I expression or reference whose value can be converted to a character string with a length equal to the maximum length allowed for the name. The value of the character string is the name to be used by the argument.

 - **"filename"**, as used in FILE(filename), specifies the name of the file. It has 1–8 characters from A–Z, 0–9, $, @, and #.
 - **"systemname"**, as used in SYSID(systemname), specifies the name of the system the request is directed to. It has 1–4 characters from A–Z, 0–9, $, @, and #.

- **“hhmmss”** can be replaced by an integer constant; otherwise the application is responsible for ensuring that the value passed to CICS is in packed decimal format. The language does not provide a packed decimal type.

 - **HH** represents hours from 00 through 99.
 - **MM** represents minutes from 00 through 59.
 - **SS** represents seconds from 00 through 59.

- **"label"** is not supported in the C language.

- **"hhmmss"** can be replaced by a decimal constant or an expression that can be converted to a FIXED DECIMAL(7,0). The value must be of the form 0HHMMSS+ where:
 - **HH** represents hours from 00 through 99.
 - **MM** represents minutes from 00 through 59.
 - **SS** represents seconds from 00 through 59.
If the UNALIGNED attribute is added to the ENTRY declarations generated by the CICS translator by a DEFAULT DESCRIPTORS statement, data-area or pointer-reference arguments to CICS commands must also be UNALIGNED. Similarly for the ALIGNED attribute, data-area or pointer-reference arguments must be ALIGNED.

Many commands involve the transfer of data between the application program and CICS.

In most cases, the length of the data to be transferred must be provided by the application program. However, if a data area is specified as the source or target, it is not necessary to provide the length explicitly, because the command-language translator generates a default length value of either STG(data-area) or CSTG(data-area), as appropriate.

Assembler-language argument values

In general, an argument may be either the address of the data or the data itself (in assembler-language terms, either a relocatable expression or an absolute expression).

A relocatable expression must not contain unmatched brackets (outside quotation marks) or unmatched quotation marks (apart from length-attribute references). If this rule is obeyed, any expression can be used, including literal constants, such as =AL2(100), forms such as 20(0,R11), and forms that use the macro-replacement facilities.

An absolute expression must be a single term that is either a length-attribute reference, or a self-defining constant.

Care must be taken with equated symbols, which should be used only when referring to registers (pointer references). If an equated symbol is used for a length, for example, it is treated as the address of the length and an unpredictable error occurs.

The argument values can be replaced as follows:

- “data-value” can be replaced by a relocatable expression that is an assembler-language reference to data of the correct type for the argument, or by a constant of the correct type for the argument.
- “data-area” can be replaced by a relocatable expression that is an assembler-language reference to data of the correct type for the argument.
- “cvda” is described in “CICS-value data areas (cvdas)” on page 5.
- “ptr-value” can be replaced by an absolute expression that is an assembler-language reference to a register.
- “ptr-ref” can be replaced by an absolute expression that is an assembler-language language reference to a register.
- “name” can be replaced either by a character string in single quotation marks, or by an assembler-language language relocatable expression reference to a character string. The length is equal to the maximum length allowed for the name. The value of the character string is the name to be used by the argument.
- “filename”, as used in FILE(filename), specifies the name of the file. It has 1–8 characters from A–Z, 0–9, $, @, and #.
- “systemname”, as used in SYSID(systemname), specifies the name of the system the request is directed to. It has 1–4 characters from A–Z, 0–9, $, @, and #.
- “label” refers to a destination address to which control is transferred. It can be replaced by the label of the destination instruction or by the label of an address constant for the destination. This constant must not specify a length.

You can also use the expression =A(dest) where “dest” is a relocatable expression denoting the destination.

For example, the following commands are equivalent:

```assembler
HANDLE CONDITION ERROR(DEST)
HANDLE CONDITION ERROR(ADCON)
HANDLE CONDITION ERROR(=A(DEST))

DEST BR 14
ADCON DC A(DEST)
```

- “hhmms” can be replaced by a self-defining decimal constant, or an assembler-language reference to a field defined as PL4. The value must be of the form 0HHMMSS+ where:
 - **HH** represents hours from 00 through 99
 - **MM** represents minutes from 00 through 59
 - **SS** represents seconds from 00 through 59.

Many commands involve the transfer of data between the application program and CICS.

In most cases, the length of the data to be transferred must be provided by the application program. However, if a data area is specified as the source or target, it is not necessary to provide the length explicitly, because the command-language translator generates a default length.

For example:

```assembler
xxx DC CL8
.
EXEC CICS ... LENGTH(L’xxx)
```
Restrictions

The following general restrictions apply to all CICS commands:

The restrictions that apply to CICS commands that access user data:

- The program must be in primary addressing mode when invoking any CICS service. The primary address space must be the home address space. All parameters passed to CICS must reside in the primary address space.
- CICS does not always preserve access registers across CICS commands or macro invocations. If your program uses access registers, it should save them before invoking a CICS service, and restore them before reusing them.

CICS-value data areas (cvdas)

There are options on a number of commands that describe or define a resource. CICS supplies, in CICS-value data areas, the values associated with these options. The options are shown in the syntax of the commands with the term “cvda” in parentheses.

You pass a cvda value in two different ways:

- You can assign a cvda value with the translator routine DFHVALUE. This allows you to change a cvda value in the program as the result of other run-time factors.

 For example:

 MOVE DFHVALUE(NOTPURGEABLE) TO AREA-A.
 EXEC CICS WAIT EXTERNAL ECBLIST() NUMEVENTS()
 PURGEABILITY(AREA-A)

- If the required action is always the same, you can declare the value directly.

 For example:

 EXEC CICS WAITCICS ECBLIST() NUMEVENTS() PURGEABLE

You receive a cvda value by defining a fullword binary data area and then testing the returned value with the translator routine DFHVALUE. For example:

EXEC CICS CONNECT PROCESS STATE(AREA-A)
IF AREA-A = DFHVALUE(ALLOCATED)
IF AREA-A = DFHVALUE(CONFFREE)

LENGTH options

In VS COBOL II, PL/I, and assembler language, the translator defaults certain lengths, if the NOLENGTH translator option is not specified. This means they are optional in programs that specify data areas.

In OS/VS COBOL and C, all LENGTH options must be specified.

When a CICS command offers the LENGTH option, it is generally expressed as a signed halfword binary value. This puts a theoretical upper limit of 32,763 bytes on LENGTH. In practice (depending on issues of recoverability, function shipping, and so on), the achievable upper limit varies from command to command, but is somewhat less than this theoretical maximum.

To be safe, do not let the value assigned to the length option for any CICS command exceed 24KB. For journal commands, the total length of a journal record is 62KB, which includes the user data, the prefix data, and the 2-byte JTYPEID. You specify this value on the FLENGTH option.

For temporary storage, transient data, and file control commands, the data set definitions may themselves impose further restrictions.

NOHANDLE option

You can use the NOHANDLE option with any command to specify that you want no action to be taken for any condition or AID resulting from the execution of that command. For further information about the NOHANDLE option, see the CICS Application Programming Guide.

Note that using the C language implies NOHANDLE on all commands.

RESP and RESP2 options

You can use the RESP option with any command to test whether a condition was raised during its execution. With some commands, when a condition can be raised for more than one reason, you can, if you have already specified RESP, use the RESP2 option to determine exactly why a condition occurred.

RESP(xxx)

“xxx” is a user-defined fullword binary data area. On return from the command, it contains a value corresponding to the condition that may have been raised, or to a normal return, that is, xxx=DFHRESP(NORMAL). You can test this value by means of DFHRESP, as follows:
EXEC CICS WRITEQ TS FROM(abc)
 QUEUE(qname)
 RESP(xxx)
 RESP2(yyy)
.
IF xxx=DFHRESP(NOSPACE) THEN ...

The above form of DFHRESP applies to both COBOL and PL/I.

An example of a similar test in C:

switch (xxx) {
 case DFHRESP(NORMAL) : break;
 case DFHRESP(INVREQ) : Invreq_Cond();
 break;
 default : Errors();
}

An example of a similar test in assembler language:

CLC xxxx,DFHRESP(NOSPACE)

which the translator changes to:

CLC xxxx,=F'18'

As the use of RESP implies NOHANDLE, you must be careful when using RESP with the RECEIVE command, because NOHANDLE overrides the HANDLE AID command as well as the HANDLE CONDITION command, with the result that PF key responses are ignored.

RESP2(yyy)

“yyy” is a user-defined fullword binary data area. On return from the command, it contains a value that further qualifies the response to certain commands. Unlike the RESP values, RESP2 values have no associated symbolic names and there is no translator built-in function corresponding to DFHRESP, so you must test the fullword binary value itself.

RESP2 values are given in the description of each command that returns them.

Possible ABEND AICA timeout

A task can be abended by CICS if it has been running for longer than the runaway time, ICVR, specified in the system initialization table (SIT). This abend can be prevented by coding an EXEC CICS SUSPEND command in the application. This causes the dispatcher to suspend the task that issued the request and allow any task of higher priority to run. If there is no task ready to run, the program that issued the suspend is resumed. For further information about abend AICA, see the CICS Problem Determination Guide.

CICS interface to JES

The CICS interface to JES (the Job Entry Subsystem component) provides specialist programmer EXEC commands for accessing the system spool files maintained by JES2 and JES3. You can support the requirements of other products to exchange files with other systems connected through a JES remote spooling communications subsystem (RSCS) network. The term JES is used to refer to both JES2 and JES3.

The CICS interface to JES enables you to:

- Retrieve data for a specific user from the local JES spool. See Figure 1 on page 7.
- Create a file and write records directly to the local JES spool. See Figure 2 on page 7.
- Send a JES spool file to a specific remote destination. See Figure 3 on page 8.

There are internal limits in JES2 and JES3 that you should consider when you are designing applications to use this interface. Some of these internal limits can depend on which release of JES you are using. You should therefore read the following in conjunction with the appropriate JES documentation.

JES2

- Number of SYSOUT data sets
 There is an upper limit to the number of data sets that can be created by a single job. If this limit is exceeded during a CICS run, subsequent SPOOLOPEN OUTPUT requests return the ‘ALLOCERR’ condition.
- Output queue and job queue sizes
 The number of Job Output Elements and Job Queue Elements may need to be increased to accommodate the additional output processing. Timely processing of the data sets created using this interface minimizes this requirement.
- Spool space
 Although the spool space for a data set created using this interface is reused after it has been processed, some control information is retained for the life of the job. You may have to increase the spool file allocation to allow for this.
JES3

- **Job queue size**
 The number of Job Queue Elements may need to be increased to accommodate the additional output processing. Also, more JSAM buffers may be required. Timely processing of the data sets created using this interface minimizes this requirement.

- **Spool space**
 Although the spool space for a data set created using this interface is reused after it has been processed, some control information is retained for the life of the job. You may have to increase the spool file allocation to allow for this.

Figure 1. Retrieve data from the JES spool

Figure 2. Create a file and write directly to the JES spool
Input

A remote application must route any files intended for a CICS transaction to a specific user name at the system where CICS resides. See Figure 1 on page 7 for an example of a CP command used by a VM system to do this. The figure also shows the EXEC CICS SPOOL commands you use to retrieve the data.

The CICS transaction issues the SPOOLOPEN command, specifying the writer name on the USERID parameter and optionally the class of output within the writer name. The normal response is:

1. No input for this external writer.
2. The single-thread is busy.
3. The file is allocated to you for retrieval, and is identified by the “token” returned by CICS. The token must be included on every SPOOL command for retrieving the data set.

In cases (1) and (2), the transaction should retry the SPOOLOPEN after a suitable interval, by restarting itself.

In case (3), the transaction should then retrieve the file with SPOOLREAD commands, and proceed to SPOOLCLOSE as rapidly as possible to release the path for other users. This is especially important for input from JES because the input path is single-threaded. When there is more than one transaction using the interface, their files can be differentiated by using different writer names or different classes within a single writer name. Furthermore, you should ensure that the transactions either terminate or wait for a short period between SPOOLCLOSE and a subsequent SPOOLOPEN. If you do not do this, one transaction can prevent others from using the interface.

Using the CICS interface to JES

To use the CICS interface to JES, you must code DFHSIT SPOOL=YES.

You must specify RESP or NOHANDLE on the EXEC CICS SPOOLCLOSE, SPOOLOPEN, SPOOLREAD, and SPOOLWRITE commands. RESP bears a one-to-one correspondence with HANDLE CONDITION. If you do not code RESP, your program abends. You can also code the RESP2 option.

NOHANDLE, RESP, and RESP2 are not shown in the syntax boxes or in the option lists for the EXEC CICS SPOOL commands described in this manual. At the end of the description of each spool command, there is a list of RESP values and the RESP2 values that are specific to the CICS-JES interface.

Transactions that process SYSOUT data sets larger than 1000 records, either for INPUT or for OUTPUT, are likely to have a performance impact on the rest of CICS. When you cannot avoid such a transaction, you should carefully evaluate general system performance. You should introduce a pacing mechanism if the effects on the rest of CICS are unacceptable.

All access to a JES spool file must be completed within one logical unit of work. Issuing an EXEC CICS SYNCPOINT command implicitly issues a SPOOLCLOSE command for any open report.
JES exits

Both JES2 and JES3 provide a way of screening incoming files. For JES2, the TSO/E Interactive Data Transmission Facility Screening and Notification exit is used. The JES3 equivalent is the Validate Incoming Netdata File exit.

You should review any use your installation makes of these exits to ensure that files that are to be read using the CICS interface to JES are correctly processed.

Output

The transaction program issues SPOOLOPEN to allocate an output data set, specifying a remote NODE and USERID. SPOOLOPEN returns a unique token to the transaction, which must be used in all subsequent SPOOLWRITE and SPOOLCLOSE commands to identify the file being written to. Finally, the transaction issues SPOOLCLOSE to close and deallocate the report, and permit its immediate printing or onward routing by the system spooler. The normal response received from the SPOOLOPEN OUTPUT command is:

| The file is allocated to you and identified by the token returned by CICS. Data can now be written to it. |

If the node is a remote system, the data set is queued on the JES spool against the destination userid. The ID of this destination user was specified on the SPOOLOPEN OUTPUT USERID parameter. If the node is a remote VM system, the data is queued in the VM RDR queue for the ID that was specified on the same USERID parameter.

Commands by function

The following is a list of EXEC CICS commands categorized according to the function they perform.

Abend support

ABEND
HANDLE ABEND

APPC basic conversation

GDS ALLOCATE
GDS ASSIGN
GDS CONNECT PROCESS
GDS EXTRACT ATTRIBUTES
GDS EXTRACT PROCESS
GDS FREE
GDS ISSUE ABEND
GDS ISSUE CONFIRMATION
GDS ISSUE ERROR
GDS ISSUE PREPARE
GDS ISSUE SIGNAL
GDS RECEIVE
GDS SEND
GDS WAIT

APPC mapped conversation

ALLOCATE (APPC)
CONNECT PROCESS
CONVERSE (APPC)
EXTRACT ATTRIBUTES (APPC)
EXTRACT PROCESS
FREE (APPC)
ISSUE ABEND
ISSUE CONFIRMATION
ISSUE ERROR
ISSUE PREPARE
ISSUE SIGNAL (APPC)
RECEIVE (APPC)
SEND (APPC)
WAIT CONVID

Authentication

CHANGE PASSWORD
SIGNOFF
SIGNON
VERIFY PASSWORD

Chapter 1. CICS API commands
Batch data interchange

ISSUE ABORT
ISSUE ADD
ISSUE END
ISSUE ERASE
ISSUE NOTE
ISSUE QUERY
ISSUE RECEIVE
ISSUE REPLACE
ISSUE SEND
ISSUE WAIT

BMS

PURGE MESSAGE
RECEIVE MAP
RECEIVE MAP MAPPINGDEV
RECEIVE PARTN
ROUTE
SEND CONTROL
SEND MAP
SEND MAP MAPPINGDEV
SEND PAGE
SEND PARTNSET
SEND TEXT
SEND TEXT MAPPED
SEND TEXT NOEDIT

Built-in functions

BIF DEEDIT

Console support

WRITE OPERATOR

Diagnostic services

DUMP TRANSACTION
ENTER TRACENUM

Document services

DOCUMENT CREATE
DOCUMENT INSERT
DOCUMENT RETRIEVE
DOCUMENT SET

Environment services

ADDRESS
ADDRESS SET
ASSIGN

Exception support

HANDLE CONDITION
IGNORE CONDITION
POP HANDLE
PUSH HANDLE

File control

DELETE
ENDBR
READ
READNEXT
READPREV
RESETBR
REWRITE
STARTBR
UNLOCK
WRITE

Interval control

ASKTIME
CANCEL
DELAY
FORMATTIME
POST
RETRIEVE
START
WAIT EVENT

Journaling

WAIT JOURNALNAME
WAIT JOURNALNUM
WRITE JOURNALNAME
WRITE JOURNALNUM

Monitoring

MONITOR

Named counter server

DEFINE COUNTER
DEFINE DCOUNTER
DELETE COUNTER
DELETE DCOUNTER
GET COUNTER
GET DCOUNTER
QUERY COUNTER
QUERY DCOUNTER
REWIND COUNTER
REWIND DCOUNTER
UPDATE COUNTER
UPDATE DCOUNTER
Chapter 1. CICS API commands

Program control

- LINK
- LOAD
- RELEASE
- RETURN
- XCTL

Scheduling

- START ATTACH
- START BREXIT

Security

- QUERY SECURITY

Spool Interface (JES)

- SPOOLCLOSE
- SPOOLOPEN INPUT
- SPOOLOPEN OUTPUT
- SPOOLREAD
- SPOOLWRITE

Storage control

- FREEMAIN
- GETMAIN

Syncpoint

- SYNCPOINT
- SYNCPOINT ROLLBACK

Task control

- CHANGE TASK
- DEQ
- ENQ
- SUSPEND
- WAIT EXTERNAL
- WAITCICS

TCP/IP services

- EXTRACT CERTIFICATE
- EXTRACT TCP/IP

Temporary storage control

- DELETEQ TS
- READQ TS
- WRITEQ TS

Terminal control

- ALLOCATE (LUTYPE6.1)
- ALLOCATE (MRO)
- BUILD ATTACH (LUTYPE6.1)
- BUILD ATTACH (MRO)
- CONVERSE (default)
- CONVERSE (LUTYPE2/LUTYPE3)
- CONVERSE (LUTYPE4)
- CONVERSE (LUTYPE6.1)
- CONVERSE (MRO)
- CONVERSE (SCS)
- CONVERSE (System/3)
- CONVERSE (System/7)
- CONVERSE (2260)
- CONVERSE (2277)
- CONVERSE (2298)
- CONVERSE (3270 display)
- CONVERSE (3270 logical)
- CONVERSE (3600 BTAM)
- CONVERSE (3600-3601)
- CONVERSE (3600-3614)
- CONVERSE (3650 interpreter)
- CONVERSE (3650-3270)
- CONVERSE (3650-3653)
- CONVERSE (3650-3680)
- CONVERSE (3735)
- CONVERSE (3740)
- CONVERSE (3767)
- CONVERSE (3770)
- CONVERSE (3790 full-function or inquiry)
- CONVERSE (3790 3270-display)
- EXTRACT ATTACH (LUTYPE6.1)
- EXTRACT ATTACH (MRO)
- EXTRACT ATTRIBUTES (MRO)
- EXTRACT LOGONMSG
- EXTRACT TCT
- FREE (LUTYPE6.1)
- FREE
- FREE (MRO)
- HANDLE AID
- ISSUE COPY (3270 display)
- ISSUE COPY (3270 logical)
- ISSUE DISCONNECT
- ISSUE ENDFILE
- ISSUE ENDOUTPUT
- ISSUE EODS
- ISSUE ERASEAUP
- ISSUE LOAD
- ISSUE PASS
- ISSUE PRINT
- ISSUE RESET
- ISSUE SIGNAL (LUTYPE6.1)
- POINT
- RECEIVE (default)
- RECEIVE (LUTYPE2/LUTYPE3)
- RECEIVE (LUTYPE4)
- RECEIVE (LUTYPE6.1)
- RECEIVE (MRO)
RECEIVE (System/3)
RECEIVE (System/7)
RECEIVE (2260)
RECEIVE (2741)
RECEIVE (2770)
RECEIVE (2780)
RECEIVE (2980)
RECEIVE (3270 display)
RECEIVE (3270 logical)
RECEIVE (3600 BTAM)
RECEIVE (3600-3601)
RECEIVE (3600-3614)
RECEIVE (3650)
RECEIVE (3735)
RECEIVE (3740)
RECEIVE (3767)
RECEIVE (3770)
RECEIVE (3790 full-function or inquiry)
RECEIVE (3790 3270-display)
SEND (default)
SEND (LUTYPE2/LUTYPE3)
SEND (LUTYPE4)
SEND (LUTYPE6.1)
SEND (MRO)
SEND (SCS)
SEND (System/3)
SEND (System/7)
SEND (2260)
SEND (2741)
SEND (2770)
SEND (2880)
SEND (2980)
SEND (3270 display)
SEND (3270 logical)
SEND (3600 BTAM)
SEND (3600 pipeline)
SEND (3600-3601)
SEND (3600-3614)
SEND (3650 interpreter)
SEND (3650-3270)
SEND (3650-3653)
SEND (3650-3680)
SEND (3735)
SEND (3740)
SEND (3767)
SEND (3770)
SEND (3790 full-function or inquiry)
SEND (3790 SCS)
SEND (3790 3270-display)
SEND (3790 3270-printer)
WAIT SIGNAL
WAIT TERMINAL

Transient data

DELETEQ TD
READQ TD
WRITEQ TD

Web services

WEB ENDBROWSE
WEB EXTRACT
WEB READ
WEB READNEXT
WEB RECEIVE
WEB RETRIEVE
WEB SEND
WEB STARTBROWSE
WEB WRITE HTTPHEADER
ABEND

Terminate a task abnormally.

```
EXEC CICS ABEND ABCODE('BCDE')
```

Description

ABEND terminates a task abnormally.

The main storage associated with the terminated task is released; optionally, a transaction dump of this storage can be obtained.

Options

ABCODE(*name*)

specifies that main storage related to the task that is being terminated is to be dumped. The ABCODE is used as a transaction dumpcode to identify the dump. The name should have four characters and should not contain any leading or imbedded blanks. If ABCODE is not coded, the dump is identified by ????.

Do not start the name with the letter A, because this is reserved for CICS itself.

CANCEL

specifies that exits established by HANDLE ABEND commands are to be ignored. An ABEND CANCEL command cancels all exits at any level in the task (and terminates the task abnormally). If the PL/I STAE execution-time option has been specified, an abnormal termination exit is established by PL/I. This exit is revoked by the CANCEL option.

NODUMP

allows you to request an abend without causing a dump to be taken.

Examples

The following example shows how to terminate a task abnormally:

```
EXEC CICS ABEND ABCODE('BCDE')
```
ADDRESS

Obtain access to CICS storage areas.

Note for dynamic transaction routing

Using ADDRESS with CWA could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the *CICS Application Programming Guide* for more information about transaction affinities.

Description

ADDRESS accesses the following areas:

- The access control environment element (ACEE)
- The communication area available to the invoked program (COMMAREA)
- The common work area (CWA)
- The EXEC interface block (EIB)
- The terminal control table user area (TCTUA)
- The transaction work area (TWA)

In OS/VS COBOL (but not VS COBOL II), if an ADDRESS command is included in a COBOL program that is to be compiled using the optimization feature, it must be followed by SERVICE RELOAD statements to reload the BLL cell being used.

In assembler language, no more than four options may be specified in one ADDRESS command.

Options

ACEE(ptr-ref)

returns a pointer to the access control environment element, the control block that is generated by an external security manager (ESM) when the user signs on. If the user is not signed on, the address of the CICS DFLTUSER's ACEE is returned. If an ACEE does not exist, CICS sets the pointer reference to the null value, X'FF000000'.

Note: Take care when addressing an ACEE in a server program invoked by a distributed program link. The ACEE address returned depends on the link security and may not be the same as the address of the user signed on at the local system.

COMMAREA(ptr-ref)

returns a pointer reference, set to the address of the communication area (COMMAREA) available to the currently executing program. COMMAREA is used to pass information between application programs. If the COMMAREA does not exist, the pointer reference is set to the null value, X'FF000000'.

In C, you must use ADDRESS COMMAREA to get the address of the communication area, because this is not passed as an argument to a C main function.

CWA(ptr-ref)

returns a pointer reference, set to the address of the common work area (CWA). This area makes information available to applications running in a single CICS system. If a CWA does not exist, CICS sets the pointer reference to the null value, X'FF000000'.

EIB(ptr-ref)

returns a pointer reference set to the address of the EXEC interface block (EIB). You must use this option to get addressability to the EIB in application routines other than the first invoked by CICS (where addressability to the EIB is provided automatically). If the application program is translated with SYSEIB in the XOPTS parameter list, this option returns the address of the system EIB.

If TASKDATALOC(ANY) is defined on the transaction definition, the address of the data may be above or below the 16MB line.

If TASKDATALOC(BELOW) is defined on the transaction definition, and the data resides above the 16MB line, the data is copied below the 16MB line, and the address of this copy is returned.

C functions must use ADDRESS EIB to get the address of the EXEC interface block, because this address is not passed as an argument to a C main function. You must code an ADDRESS EIB statement at the beginning of each application if you want access to the EIB, or if you...
are using a command that includes the RESP or RESP2 option.

TCTUA(ptr-ref)

returns a pointer reference, set to the address of the terminal control table user area (TCTUA) for the principal facility, not that for any alternate facility that may have been allocated. This area is used for passing information between application programs, but only if the same terminal is associated with the application programs involved. If a TCTUA does not exist, the pointer reference is set to the null value, X'FF000000'.

TWA(ptr-ref)

returns a pointer reference, set to the address of the transaction work area (TWA). This area is used for passing information between application programs, but only if they are in the same task. If a TWA does not exist, the pointer reference is set to the null value, X'FF000000'.

If TASKDATALOC(ANY) is defined on the transaction definition, the address of the data may be above or below the 16MB line.

If TASKDATALOC(BELOW) is defined on the transaction definition, and the data resides above the 16MB line, the data is copied below the 16MB line, and the address of this copy is returned.
ADDRESS SET

Set the address of a structure or pointer.

\[\text{ADDRESS} \rightarrow \text{SET}(\text{data-area}) \rightarrow \text{USING}(\text{ptr-ref}) \rightarrow \text{SET}(\text{ptr-ref}) \rightarrow \text{USING}(\text{data-area})\]

Description

The value from the USING option is used to set the reference in the SET option.

Options

\text{SET(} \text{data-area/ptr-ref} \text{)}

sets a pointer reference.

\text{USING(} \text{ptr-ref/data-area} \text{)}

supplies a pointer value.

Examples

COBOL example of ADDRESS SET: To set the address of a structure to a known pointer value:

```
EXEC CICS ADDRESS SET(address of struc)
   USING(ptr)
```

To set a pointer variable to the address of a structure:

```
EXEC CICS ADDRESS SET(ptr)
   USING(address of struc01)
```
ALLOCATE (APPC)

Acquire a session to a remote APPC logical unit for use by an APPC mapped conversation.

\[
\text{ALLOCATE} \quad \text{SYSID(systemname)} \quad \text{PROFILE(name)} \quad \text{PARTNER(name)} \quad \text{NOQUEUE} \quad \text{STATE(cvda)}
\]

Conditions: CBIDERR, INVREQ, NETNAMEIDERR, PARTNERIDERR, SYSBUSY, SYSIDERR

Description

ALLOCATE acquires the session and optionally selects a set of session-processing options. CICS makes one of the sessions associated with the named system available to the application program.

CICS returns, in EIBRSRCE in the EIB, the 4-byte CONVID (conversation identifier) that the application program uses in all subsequent commands that relate to the conversation.

If the session requested is not available, the application is suspended until the session does become available. In such a case, the suspension of the application can be prevented by specifying either the NOQUEUE or the NOSUSPEND option. NOSUSPEND is still supported as an equivalent for NOQUEUE, but NOQUEUE is the preferred keyword.

A session is available for allocation only if it is all of the following:
- A contention winner
- Already bound
- Not already allocated

Options

NOQUEUE
overides the default action when a SYSBUSY condition arises. This indicates that the session requested is not immediately available. The default action is to suspend application execution until the session is available. NOQUEUE inhibits this waiting; control returns immediately to the application program instruction following the command.

Note, however, that if a HANDLE CONDITION for SYSBUSY is active when the command is executed, this also overides the default action, and control is passed to the user label supplied in the HANDLE CONDITION. This takes precedence over the NOQUEUE option but is, of course, negated by either NOHANDLE or RESP.

For a single session APPC ALLOCATE request, issued from the \textit{loser} half session, the NOQUEUE option always causes SYSBUSY to be returned rather than allowing the request to bid for the session.

PARTNER(name)
specifies the name (8 characters) of a set of definitions that include the names of a remote LU (NETNAME) and a communication profile to be used on the allocated session. You can use this option as an alternative to specifying SYSID and PROFILE explicitly.

PROFILE(name)
specifies the name (1-8 characters) of a set of session-processing options that are to be used during the execution of mapped commands for the session specified in the SYSID option. If you specify SYSID and omit PROFILE, a default profile (DFHCICSA) is selected.

STATE(cvda)
gets the state of the current conversation. The cvda value returned by CICS is ALLOCATED.

SYSID(systemname)
specifies the name (1-4 characters) by which the remote APPC LU is known to this CICS. This option requests that one of the sessions to the named system is to be allocated.

Conditions

CBIDERR
occurs if the requested PROFILE cannot be found.

Default action: terminate the task abnormally.

INVREQ
occurs if the ALLOCATE command is not valid for the device to which it is directed.

Default action: terminate the task abnormally.

NETNAMEIDERR
occurs if the name specified in the NETNAME parameter of the RDO definition for the PARTNER specified on the allocate command is invalid.

Default action: terminate the task abnormally.

PARTNERIDERR
occurs if the name specified in the PARTNER option is not recognized by CICS.

Default action: terminate the task abnormally.
ALLOCATE (APPC)

SYSBUSY
occurs for one of the following reasons:

- The request for a session cannot be serviced immediately. This is only possible if the NOQUEUE option is set, or a HANDLE CONDITION for SYSBUSY is active.
- The ALLOCATE command is issued when persistent session recovery is still in process and the sessions needed to satisfy the command are not yet recovered.

Default action: ignore the condition.

SYSIDERR
occurs if CICS is unable to provide the application program with a suitable session, for one of the following reasons:

- The name specified in the SYSID option is not recognized by CICS.
- The mode name derived from the PROFILE option is not one of the mode names defined for the APPC system entry.
- All the sessions in the group specified by SYSID and mode name are out of service, or all sessions are out of service.
- The AID (automatic initiate descriptor) representing your ALLOCATE has been canceled.

Default action: terminate the task abnormally.
ALLOCATE (LUTYPE6.1)

Acquire a session to a remote LUTYPE6.1 logical unit.

```
ALLOCATE SESSION(name) SYSID(systemname) PROFILE(name) NOQUEUE
```

Conditions: CBIDERR, EOC, INVREQ, SESSBUSY, SESSIONERR, SYSBUSY, SYSIDERR

Description

ALLOCATE acquires an alternate facility and optionally selects a set of session-processing options. If SYSID is specified, CICS makes available to the application program one of the sessions associated with the named system. The name of this session can be obtained from EIBRSRCE in the EIB. If SESSION is specified, CICS makes the named session available.

If the session requested is not available, the application is suspended until the session does become available. In such a case, the suspension of the application can be prevented by specifying either the NOQUEUE or the NOSUSPEND option. NOSUSPEND is still supported as an equivalent for NOQUEUE, but NOQUEUE is the preferred keyword.

Options

NOQUEUE

overrides the default action when a SESSBUSY or SYSBUSY condition arises. These conditions indicate that the session requested is not immediately available. The default action is to suspend application execution until the session is available. NOQUEUE inhibits this waiting; control returns immediately to the application program instruction following the command.

Note, however, that if a HANDLE CONDITION for SESSBUSY or SYSBUSY is active when the command is executed, this also overrides the default action, and control is passed to the user label supplied in the HANDLE CONDITION. This takes precedence over the NOQUEUE option but is, of course, negated by either NOHANDLE or RESP.

PROFILE(name)

specifies the name (1–8 characters) of a set of session-processing options that are to be used during execution of terminal control commands for the session specified in the SYSID or SESSION options. If the PROFILE option is omitted, a default profile (DFHCICSA) is selected.

SESSION(name)

specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used.

SYSID(systemname)

specifies the name (1–4 characters) of a system TCTSE. This option specifies that one of the sessions to the named system is to be allocated.

Conditions

CBIDERR

occurs if the requested PROFILE cannot be found.

Default action: terminate the task abnormally.

EOC

occurs when a request/response unit (RU) is received with the end-of-chain indicator set. Field EIBEOC also contains this indicator.

Default action: ignore the condition.

INVREQ

occurs when the specified session is already allocated to this task, or the session is an APPC session.

Default action: terminate the task abnormally.

SESSBUSY

occurs if the request for the specified session cannot be serviced immediately. This is only possible if the NOQUEUE option is set, or a HANDLE CONDITION for SESSBUSY is active.

Default action: ignore the condition.

SESSIONERR

occurs if the name specified in the SESSION option is not that of an LUTYPE6.1 session TCTTE, or if the session cannot be allocated because it is out of service.

Default action: terminate the task abnormally.

SYSBUSY

occurs for one of the following reasons:

- The request for a session cannot be serviced immediately. This is only possible if the NOQUEUE
ALLOCATE (LUTYPE6.1)

option is set, or a HANDLE CONDITION for SYSBUSY is active.

- The ALLOCATE command is issued when persistent session recovery is still in process and the sessions needed to satisfy the command are not yet recovered.

Default action: ignore the condition.

SYSIDERR occurs if CICS is unable to provide the application program with a suitable session, for one of the following reasons:

- The name specified in the SYSID option is not recognized by CICS.
- All sessions are out of service.
- The AID (automatic initiate descriptor) representing your ALLOCATE has been canceled.

Default action: terminate the task abnormally.
ALLOCATE (MRO)

Acquire an MRO session.

ALLOCATE—SYSID(systemname) NOQUEUE STATE(cvda)

Conditions: INVREQ, SYSBUSY, SYSIDERR

Description

ALLOCATE acquires an alternate facility. CICS makes available to the application program one of the sessions associated with the system named in the SYSID option. The name of this session can be obtained from EIBRSRCE in the EIB.

(If the PROFILE option is specified, it is ignored on an MRO session. This is useful if you want to code a command that can be used on either an LUTYPE6.1 or MRO session.)

If the session requested is not available, the application is suspended until the session does become available. In such a case, the suspension of the application can be prevented by specifying the NOQUEUE option.

For more information about MRO and IRC, see the CICS Intercommunication Guide.

Options

NOQUEUE

overrides the default action when a SYSBUSY condition arises. This condition indicates that the session requested is not immediately available. The default action is to suspend application execution until the session is available. NOQUEUE inhibits this waiting; control returns immediately to the application program instruction following the command.

Note, however, that if a HANDLE CONDITION for SYSBUSY is active when the command is executed, this also overrides the default action, and control is passed to the user label supplied in the HANDLE CONDITION. This takes precedence over the NOQUEUE option but is, of course, negated by either NOHANDLE or RESP.

STATE(cvda)

gets the state of the current conversation. The cvda value returned by CICS is ALLOCATED.

SYSID(systemname)

specifies the name (1–4 characters) of a system TCTSE. This option specifies that one of the sessions to the named system is to be allocated.

Conditions

INVREQ

occurs if an incorrect command has been issued for the LU or terminal in use.

Default action: terminate the task abnormally.

SYSBUSY

occurs if the request for a session cannot be serviced immediately. This is only possible if the NOQUEUE option is set, or a HANDLE CONDITION for SYSBUSY is active.

Default action: ignore the condition.

SYSIDERR

occurs if CICS is unable to provide the application program with a suitable session, for one of the following reasons:

- The name specified in the SYSID option is not recognized by CICS.
- All sessions are out of service.
- The AID (automatic initiate descriptor) representing your ALLOCATE has been canceled.

Default action: terminate the task abnormally.
ASKTIME

Request current date and time of day.

```
ASKTIME
    ABSTIME(data-area)
```

Description

ASKTIME updates the date (EIBDATE) and CICS time-of-day clock (EIBTIME) fields in the EIB. These two fields initially contain the date and time when the task started.

In response to an ASKTIME command, CICS issues an MVS STCK macro and modifies this by a local time difference. Thus, if your MVS TOD (hardware) clock is set to, say, GMT, and the local time is defined as British Summer Time (BST), it is BST that is stored in the EIBTIME field.

Refer to Appendix A, “EXEC interface block” on page 387 for details of the EIB.

Options

ABSTIME(data-area) specifies the data area for the time, in packed decimal, since 00:00 on 1 January 1900 (in milliseconds rounded to the nearest hundredth of a second).

You can use FORMATTIME to change the data into other familiar formats.

Examples

For example, after execution of:

```
EXEC CICS ASKTIME ABSTIME(utime)
```

"utime" contains a value similar in format to 002837962864820.

The format of “data-area” is:

```plaintext
COBOL:  PIC 9(15) COMP-3 
C      char data_area[8];
PL/I:   FIXED DEC(15)
ASM:    PL8
```
Request values from outside the application program’s local environment.

Condition: INVREQ
ASSIGN

Description

ASSIGN gets values from outside the local environment of the application program. The data obtained depends on the specified options. Up to sixteen options can be specified in one ASSIGN command.

Where any of the following options apply to terminals or terminal-related data, the reference is always to the principal facility.

If the principal facility is a remote terminal, the data returned is obtained from the local copy of the information; the request is not routed to the system to which the remote terminal is attached.

Transaction routing is as far as possible transparent to the ASSIGN command. In general, the values returned are the same whether the transaction is local or remote.

For more details on these options, see the CICS Intercommunication Guide.

Options

ABCODE(data-area)
returns a 4-character current abend code. (Abend codes are documented in the CICS Messages and Codes manual). If an abend has not occurred, the variable is set to blanks.

ABDUMP(data-area)
returns a 1-byte value. X'FF' indicates that a dump has been produced and that ABCODE contains an abend code. X'00' indicates either that no dump has been produced, or that ABCODE contains blanks.

ABPROGRAM(data-area)
returns an 8-character name of the failing program for the latest abend.

If the abend originally occurred in a DPL server program running in a remote system, ABPROGRAM returns the DPL server program name.

This field is set to binary zeros if it is not possible to determine the failing program at the time of the abend.

ACTIVITY(data-area)
returns, if this program is executing on behalf of a CICS business transaction services (BTS) activity, the 16-character name of the activity.

BTS is described in the CICS Business Transaction Services manual.

ACTIVITYID(data-area)
returns, if this program is executing on behalf of a BTS activity, the 52-character, CICS-assigned, identifier of the activity-instance.

BTS is described in the CICS Business Transaction Services manual.

ALTSCRNHT(data-area)
returns the alternate screen height defined for the terminal as a halfword binary variable. If the task is not initiated from a terminal, INVREQ occurs.

ALTSCRNWD(data-area)
returns the alternate screen width defined for the terminal as a halfword binary variable. If the task is not initiated from a terminal, INVREQ occurs.

APLKBMD(data-area)
returns a 1-byte indicator showing whether the terminal keyboard has the APL keyboard feature. X'FF' indicates "yes". X'00' indicates "no". If the task is not initiated from a terminal, INVREQ occurs.

APLTEXT(data-area)
returns a 1-byte indicator showing whether the terminal keyboard has the APL text feature. X'FF' indicates "yes". X'00' indicates "no". If the task is not initiated from a terminal, INVREQ occurs.

APPLID(data-area)
returns an 8-character applid of the CICS system owning the transaction.

If your system is using XRF (that is, XRF=YES has been specified in the system initialization parameters), the value returned is the generic applid (that is, the applid that identifies the active and alternate CICS systems). An application program is unaffected by a takeover from the active to the alternate.

ASRAINTRPT(data-area)
returns an 8-character program status word (PSW) containing interrupt information at the point when the latest abend with a code of ASRA, ASRB, ASRD, or AICA occurred.

The field contains binary zeros if no ASRA, ASRB, ASRD, or AICA abend occurred during the execution of the issuing transaction, or if the abend originally occurred in a remote DPL server program.

ASRAKEY(cvda)
returns the execution key at the time of the last ASRA, ASRB, AICA, or AEYD, abend, if any. CVDA values are:

CICSEXECKEY
is returned if the task was executing in CICS-key at the time of the last ASRA, ASRB, AICA, or AEYD abend. Note that all programs execute in CICS key if CICS subsystem storage protection is not active.

USERSEXECKEY
is returned if the task was executing in user-key at the time of the last ASRA, ASRB, AICA, or AEYD abend.

NONCICS
is returned if the execution key at the time of the last abend was not one of the CICS keys; that is, not key 8 or key 9.
NOTAPPLIC
is returned if there has not been an ASRA, ASRB, AICA, or AEYD abend.

ASRAPSW(data-area)
returns an 8-character program status word (PSW) at the point when the latest abend with a code of ASRA, ASRB, ASRD, or AICA occurred.
The field contains binary zeros if no ASRA, ASRB, ASRD, or AICA abend occurred during the execution of the issuing transaction, or if the abend originally occurred in a remote DPL server program.

ASRAREGS(data-area)
returns the contents of general registers 0–15 at the point when the latest ASRA, ASRB, ASRD, or AICA abend occurred.
The contents of the registers are returned in the data area (64 bytes long) in the order 0, 1, ..., 14, 15.
Note that the data area is set to binary zeros if no ASRA, ASRB, ASRD, or AICA abend occurred during the execution of the issuing transaction or the abend originally occurred in a remote DPL server program.

ASRASPC(cvda)
returns the type of space in control at the time of the last ASRA, ASRB, AICA, or AEYD, abend, if any. The CVDA values on the ASRASPC option are:

SUBSPACE
is returned if the task was executing in either its own subspace or the common subspace at the time of the last ASRA, ASRB, AICA, or AEYD abend.

BASESPACE
is returned if the task was executing in the base space at the time of the last ASRA, ASRB, AICA, or AEYD abend. Note that all tasks execute in base space if transaction isolation is not active.

NOTAPPLIC
is returned if there has not been an ASRA, ASRB, AICA, or AEYD abend.

ASRASTG(cvda)
returns the type of storage being addressed at the time of the last ASRA or AEYD, abend, if any. The CVDA values are:

CICS
is returned if the storage being addressed is CICS-key storage. This can be in one of the CICS dynamic storage areas (CDSA or ECDSA), or, in one of the read-only dynamic storage areas (RDSA or ERDSA) when CICS is running with the NOPROTECT option on the RENTPGM system initialization parameter or when storage protection is not active.

USER
is returned if the storage being addressed is user-key storage in one of the user dynamic storage areas (UDSA or EUDSA).

READONLY
is returned if the storage being addressed is read-only storage in one of the read-only dynamic storage areas (RDSA or ERDSA) when CICS is running with the PROTECT option on the RENTPGM system initialization parameter.

NOTAPPLIC
is returned if:
• There is no ASRA or AEYD abend found for this task.
• The affected storage in an abend is not managed by CICS.
• The ASRA abend is not caused by an 0C4 abend.
• An ASRB or AICA abend has occurred since the last ASRA or AEYD abend.

BRIDGE(data-area)
returns the 4-character TRANSID of the bridge monitor transaction that issued a START BREXIT TRANSID command to start the user transaction that issued this command. Blanks are returned if:
• The user transaction was not started by a bridge monitor transaction.
• This command was issued by a program started by a distributed program link (DPL) request.

Note: If the START BREXIT command was issued from a bridge exit, the TRANSID returned is the that of the bridge monitor that issued a START BREXIT naming the bridge exit.

BTRANS(data-area)
returns a 1-byte indicator showing whether the terminal is defined as having the background transparency capability (X‘FF’) or not (X‘00’). If the task is not initiated from a terminal, INVREQ occurs.

CMDSEC(data-area)
returns a 1-byte indicator showing whether command security checking has been defined for the current task. (X for “yes”, blank for “no”.)

COLOR(data-area)
returns a 1-byte indicator showing whether the terminal is defined as having the extended color capability (X‘FF’) or not (X‘00’). If the task is not initiated from a terminal, INVREQ occurs.

CWALEN(data-area)
returns a halfword binary field indicating the length of the CWA. If no CWA exists, a zero length is returned.
ASSIGN

DEFSRNHT(data-area)
returns a halfword binary variable that contains the default screen height defined for the terminal. If the task is not initiated from a terminal, INVREQ occurs.

DEFSRNWD(data-area)
returns a halfword binary variable that contains the default screen width defined for the terminal. If the task is not initiated from a terminal, INVREQ occurs.

DELIMITER(data-area)
returns a 1-byte data-link control character for a 3600. This can be:

- X'80' Input ended with end-of-text (ETX).
- X'40' Input ended with end-of-block (ETB).
- X'20' Input ended with inter-record separator (IRS).
- X'10' Input ended with start of header (SOH).
- X'08' Transparent input.

If the task is not initiated from a terminal, INVREQ occurs.

DESTCOUNT(data-area)
returns a halfword binary field. This option has two uses:

1. Following a BMS ROUTE command, it shows that the value required is the number of different terminal types in the route list, and hence the number of overflow control areas that may be required.
2. Within BMS overflow processing, it shows that the value required is the relative overflow control number of the destination that has encountered overflow. If this option is specified when overflow processing is not in effect, the value obtained is meaningless. If no BMS commands have been issued, INVREQ occurs.

DESTID(data-area)
returns an 8-byte identifier of the outboard destination, padded with blanks on the right to eight characters. If this option is specified before a batch data interchange command has been issued in the task, INVREQ occurs.

DESTIDLENG(data-area)
returns a halfword binary length of the destination identifier obtained by DESTID. If this option is specified before a batch data interchange command has been issued in the task, INVREQ occurs.

DSSCS(data-area)
returns a 1-byte indicator showing whether the principal facility is a basic SCS data stream device. (X'FF' for "yes", or X'00' for "no").

If the task is not initiated from a terminal, INVREQ occurs.

GMMI(data-area)
returns a 1-byte indicator showing whether a "good morning" message applies to the terminal associated

If the task is not initiated from a terminal, INVREQ occurs.

EWASUPP(data-area)
returns a 1-byte indicator showing whether Erase Write Alternative is supported. (X'FF' for "yes", X'00' for "no").

If the task is not initiated from a terminal, INVREQ occurs.

EXTDS(data-area)
returns a 1-byte indicator showing whether the terminal accepts the 3270 extended data stream, (X'FF') or not (X'00'). Extended data stream capability is required for a terminal that supports the query feature, color, extended highlighting, programmed symbols or validation. A terminal that accepts the query structured field command also has this indicator set. If extended data stream is on, the device supports the write structured field COMMAND and Outbound Query Structured field.

(For guidance information about query structured fields, see the CICS 3270 Data Stream Device Guide.)

If the task is not initiated from a terminal, INVREQ occurs.

FACILITY(data-area)
returns a 4-byte identifier of the principal facility that initiated the transaction issuing this command. If this option is specified, and there is no allocated facility, INVREQ occurs.

FCI(data-area)
returns a 1-byte facility control indicator, see “ASSIGN FCI” on page 397. This indicates the type of facility associated with the transaction; for example, X'01' indicates a terminal or logical unit. The obtained value is always returned.

GCHARS(data-area)
returns a halfword binary graphic character set global identifier (the GCSGID). The value is a number in the range 1 through 65534 representing the set of graphic characters that can be input or output at the terminal. The task is not initiated by expiry of a transient data trigger level.

GCODES(data-area)
returns a halfword binary code page global identifier (the CPGID). The value is a number in the range 1 through 65534 representing the EBCDIC or ASCII code page defining the code points for the characters that can be input or output at the terminal. If the task is not initiated from a terminal, INVREQ occurs.

If the task is not initiated from a terminal, INVREQ occurs.
with the running transaction. (X'FF' for "yes", or X'00' for "no"). If this option is specified and the current task is not associated with a terminal, the INVREQ condition occurs.

HILIGHT(data-area)
returns a 1-byte indicator showing whether the terminal is enabled as having the extended highlight capability (X'FF') or not (X'00'). If the task is not initiated from a terminal, INVREQ occurs.

INITPARM(data-area)
returns the 60-character data-area containing any initialization parameters specified for the program in the INITPARM system initialization parameter. If there are no parameters for the program, the area is filled with binary zeros. (See the CICS System Definition Guide for further information about the INITPARM parameter.)

INITPARMLEN(data-area)
returns a halfword binary length of the INITPARM. If there is no parameter for it, INITPARMLEN contains binary zeros.

INPARTN(data-area)
returns the 1- or 2-character name of the most recent input partition. If no map has yet been positioned, or if BMS routing is in effect, or if the task is not initiated from a terminal, INVREQ occurs.

INVOKINGPROG(data-area)
returns the 8-character name of the application program that used the LINK or XCTL command to link or transfer control to the current program.

If you issue the ASSIGN INVOKINGPROG command in a remote program that was invoked by a distributed program link (DPL) command, CICS returns the name of the program that issued the DPL command.

If you issue the ASSIGN INVOKINGPROG command in an application program at the highest level, CICS returns eight blanks.

If you issue the ASSIGN INVOKINGPROG command in a user-replaceable program, a Bridge Exit program or a program list table program, CICS returns eight blanks.

If you issue the ASSIGN INVOKINGPROG command from a global user exit, task-related exit, or application program linked to from such an exit, CICS returns the name of the most recent invoking program that was not a global user exit or task-related user exit.

KATAKANA(data-area)
returns a 1-byte indicator showing whether the principal facility supports Katakana (X'FF') or not (X'00'). If the task is not initiated from a terminal, INVREQ occurs.

LANGINUSE(data-area)
returns a 3-byte mnemonic code showing the language in use. The 3-byte mnemonic has a 1:1 correspondence with the 1-byte NATLANGINUSE option. See Appendix I, “National language codes” on page 419 for possible values of the code.

LDCMNEM(data-area)
returns a 2-byte logical device code (LDC) mnemonic of the destination that has encountered overflow. If this option is specified when overflow processing is not in effect, the value obtained not significant. If no BMS commands have been issued, INVREQ occurs.

LDCNUM(data-area)
returns a 1-byte LDC numeric value of the destination that has encountered overflow. This indicates the type of the LDC, such as printer or console. If this option is specified when overflow processing is not in effect, the value obtained is not significant.

MAPCOLUMN(data-area)
returns a halfword binary number of the column on the display containing the origin of the most recently positioned map. If no map has yet been positioned, or if BMS routing is in effect, or if the task is not initiated from a terminal, INVREQ occurs.

MAPHEIGHT(data-area)
returns a halfword binary height of the most recently positioned map. If no map has yet been positioned, or if BMS routing is in effect, or if the task is not initiated from a terminal, INVREQ occurs.

MAPLINE(data-area)
returns a halfword binary number of the line on the display containing the origin of the most recently positioned map. If no map has yet been positioned, or if BMS routing is in effect, or if the task is not initiated from a terminal, INVREQ occurs.

MAPWIDTH(data-area)
returns a halfword binary width of the most recently positioned map. If no map has yet been positioned, or if BMS routing is in effect, or if the task is not initiated from a terminal, INVREQ occurs.

MSRCONTROL(data-area)
returns a 1-byte indicator showing whether the terminal supports magnetic slot reader (MSR) control (X'FF') or not (X'00'). If the task is not initiated from a terminal, INVREQ occurs.

NATLANGINUSE(data-area)
returns a 1-byte mnemonic code showing the national language in use. See Appendix I, “National language codes” on page 419 for possible values of the code. (NATLANGINUSE does not show the system default language as specified on the NATLANG system initialization parameter.)

NETNAME(data-area)
returns the 8-character name of the logical unit in the VTAM® network. If the task is not initiated from a terminal, INVREQ occurs. If the principal facility is not a local terminal, CICS no longer returns a null string but the netname of the remote terminal.
ASSIGN

If this command was issued by a user transaction which was started by a Bridge Transaction, the value returned is the termid of the Bridge Facility.

NEXTTRANSID(data-area)

returns the 4-character next transaction identifier as set by SET NEXTTRANSID or RETURN TRANSID. It returns blanks if there are no more transactions.

NUMTAB(data-area)

returns a 1-byte number of the tabs required to position the print element in the correct passbook area of the 2980. If the task is not initiated from a terminal, INVREQ occurs.

OPCLASS(data-area)

returns, in a 24-bit string, the operator class used by BMS for routing terminal messages, as defined in the CICS segment of the External Security Manager.

OPERKEYS(data-area)

is accepted for compatibility with previous releases. If specified, a 64-bit null string is returned.

OPID(data-area)

returns the 3-character operator identification. This is used by BMS for routing terminal messages, as defined in the CICS segment of the External Security Manager.

If the task is initiated from a remote terminal, the OPID returned by this command is not necessarily that associated with the user that is signed on at the remote terminal. If you wish to know the OPID of the signed on user, you should use the the INQUIRE TERMINAL system programming command, which is described in the CICS System Programming Reference manual.

The OPID may also be different from that of the user currently signed on, if it has been changed with the SET TERMINAL command.

OPSECURITY(data-area)

is accepted for compatibility with previous releases. If specified, a 24-bit null string is returned.

ORGABCODE(data-area)

returns as a 4-byte original abend code in cases of repeated abends.

OUTLINE(data-area)

returns a 1-byte indicator showing whether the terminal is defined as having the field outlining capability (X'FF') or not (X'00'). If the task is not initiated from a terminal, INVREQ occurs.

PAGENUM(data-area)

returns a halfword binary current page number for the destination that has encountered an overflow. If this option is specified when overflow processing is not in effect, the value obtained is meaningless. If no BMS commands have been issued, INVREQ occurs.

PARTNPAGE(data-area)

returns a 2-byte name of the partition that most recently caused page overflow. If no BMS commands have been issued, INVREQ occurs.

PARTNS(data-area)

returns a 1-byte indicator showing whether the terminal supports partitions (X'FF') or not (X'00'). If the task is not initiated from a terminal, INVREQ occurs.

PARTNSET(data-area)

returns the name (1–6 characters) of the application partition set. A blank value is returned if there is no application partition set. If the task is not initiated from a terminal, INVREQ occurs.

PRINSYSID(data-area)

returns the 4-character name by which the other system is known in the local system; that is, the CONNECTION definition that defines the other system. For a single-session APPC device defined by a terminal definition, the returned value is the terminal identifier.

This only applies when the principal facility is one of the following:

- An MRO session to another CICS system
- An LU6.1 session to another CICS or IMS system
- An APPC session to another CICS system, or to another APPC system or device

If the principal facility is not an MRO, LU6.1, or APPC session, or if the task has no principal facility, INVREQ occurs.

Note: Special considerations apply generally when transaction routing. In particular an ASSIGN PRINSYSID command cannot be used in a routed transaction to find the name of the terminal-owning region. (See the CICS Intercommunication Guide for more information)

PROCESS(data-area)

returns, if this program is executing on behalf of a CICS business transaction services (BTS) activity, the 36-character name of the BTS process that contains the activity.

BTS is described in the CICS Business Transaction Services manual.

PROCESSTYPE(data-area)

returns, if this program is executing on behalf of a BTS activity, the 8-character process-type of the BTS process that contains the activity.

BTS is described in the CICS Business Transaction Services manual.

PROGRAM(data-area)

returns an 8-character name of the currently running program.
ASSIGN

PS(data-area)
returns a 1-byte indicator showing whether the terminal is defined as having the programmed symbols capability (X'FF') or not (X'00'). If the task is not initiated from a terminal, INVREQ occurs.

QNAME(data-area)
returns a 4-character name of the transient data intrapartition queue that caused this task to be initiated by reaching its trigger level. If the task is not initiated by automatic transaction initiation (ATI), INVREQ occurs.

RESECE(data-area)
returns a 1-byte indicator showing whether resource security checking has been defined for the transaction running. (X for "yes", blank for "no").

RESTART(data-area)
returns a 1-byte indicator showing whether a restart of the task (X'FF'), or a normal start of the task (X'00'), has occurred.

RETURNPROG(data-area)
returns the 8-character name of the program to which control is to be returned when the current program has finished executing. The values returned depend on how the current program was given control, as follows:

- If the current program was invoked by a LINK command, including a distributed program link, RETURNPROG returns the same name as INVOKINGPROG.
- If the current program was invoked by an XCTL command, RETURNPROG returns the name of the application program in the chain that last issued a LINK command.
- If the program that invoked the current program with an XCTL command is at the highest level, CICS returns eight blanks.
- If the ASSIGN RETURNPROG command is issued in the program at the top level, CICS returns eight blanks.
- If the ASSIGN RETURNPROG command is issued in a user-replaceable module, or a program list table program, CICS returns eight blanks.
- If the ASSIGN RETURNPROG is issued in a global user exit, task-related exit, or application program linked to from such an exit, CICS returns the name of the program that control is returned to when all intermediate global user exit and task-related user exit programs have completed.

SCRNHT(data-area)
returns a halfword binary variable that contains the height of the 3270 screen defined for the current task. If the task is not initiated from a terminal, INVREQ occurs.

SCRNWD(data-area)
returns a halfword binary variable that contains the width of the 3270 screen defined for the current task. If the task is not initiated from a terminal, INVREQ occurs.

SIGDATA(data-area)
returns a 4-byte character string containing the inbound signal data received from a logical unit. If the task is not initiated from a terminal, INVREQ occurs.

SOSI(data-area)
returns a 1-byte indicator showing whether the terminal is defined as having the mixed EBCDIC/DBCS fields capability (X'FF') or not (X'00'). The DBCS subfields within an EBCDIC field are delimited by SO (shift-out) and SI (shift-in) characters. If the task is not initiated from a terminal, INVREQ occurs.

STARTCODE(data-area)
returns a 2-byte indicator showing how the transaction issuing the request was started. It can have the following values:

<table>
<thead>
<tr>
<th>Code</th>
<th>Transaction started by</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>A distributed program link (DPL) request that did not specify the SYNCONRETURN option. The task cannot issue I/O requests against its principal facility, nor can it issue any syncpoint requests.</td>
</tr>
<tr>
<td>DS</td>
<td>A distributed program link (DPL) request, as in code D, that did specify the SYNCONRETURN option. The task can issue syncpoint requests.</td>
</tr>
<tr>
<td>QD</td>
<td>Transient data trigger level.</td>
</tr>
<tr>
<td>S</td>
<td>START command without data.</td>
</tr>
<tr>
<td>SD</td>
<td>START command with data.</td>
</tr>
<tr>
<td>SZ</td>
<td>FEPI START command.</td>
</tr>
<tr>
<td>TD</td>
<td>Terminal input or permanent transid.</td>
</tr>
<tr>
<td>U</td>
<td>User-attached task.</td>
</tr>
</tbody>
</table>

STATIONID(data-area)
returns a 1-byte station identifier of a 2980. If the task is not initiated from a terminal, INVREQ occurs.

SYSID(data-area)
returns the 4-character name given to the local CICS system. This value may be specified in the SYSID option of a file control, interval control, temporary storage, or transient data command, in which case the resource to be accessed is assumed to be on the local system.

TASKPRIORITY(data-area)
returns a halfword binary filed indicating the current priority of the issuing task (0–255). When the task is first attached, this is the sum of the user, terminal, and transaction priorities. This value can be changed during execution by a CHANGE TASK command.
ASSIGN

TCTUALENG(data-area)
returns a halfword binary length of the terminal control table user area (TCTUA). If no TCTUA exists, a zero length is returned.

TELLERID(data-area)
returns a 1-byte teller identifier of a 2980. If the task is not initiated from a terminal, INVREQ occurs.

TERMCODE(data-area)
returns a 2-byte code giving the type and model number of the terminal associated with the task.
The first byte is a code identifying the terminal type, derived from the terminal resource definition. This is the DEVICE attribute (described in the CICS Resource Definition Guide). The second byte is a single-character model number as specified in the TERMMODEL attribute.
The meanings of the type codes are given in Appendix B, "Codes returned by ASSIGN" on page 397.

TERMPRIORITY(data-area)
returns a halfword binary terminal priority (0–255).

TEXTKYBD(data-area)
returns a 1-byte indicator showing whether the principal facility supports TEXTKYBD. (X'FF' for "yes", or X'00' for "no"). If the task is not initiated from a terminal, INVREQ occurs.

TEXTPRINT(data-area)
returns a 1-byte indicator showing whether the principal facility supports TEXTPRINT. (X'FF' for "yes", or X'00' for "no"). If the task is not initiated from a terminal, INVREQ occurs.

TRANPRIORITY(data-area)
returns a halfword binary transaction priority (0–255).

TWALENG(data-area)
returns a halfword binary length of the transaction work area (TWA). If no TWA exists, a zero length is returned.

UNATTEND(data-area)
returns a 1-byte indicator showing whether the mode of operation of the terminal is unattended, that is to say no person is actually attending the terminal. These indicators are X'FF' for unattended and X'00' for attended. If the task is not initiated from a terminal, INVREQ occurs.

USERID(data-area)
returns an 8-byte userid of the signed-on user. If no user is explicitly signed on, CICS returns the default userid. Special considerations apply if you are using an intercommunication environment. See the CICS Intercommunication Guide for more information about the ASSIGN command for LUTYPE6.1, APPC, and MRO.

USERNAME(data-area)
returns a 20-character name of the user obtained from the external security manager (ESM).

USERPRIORITY(data-area)
returns a halfword binary operator priority (0–255).

VALIDATION(data-area)
returns a 1-byte indicator showing whether the terminal is defined as having the validation capability (X'FF') or not (X'00'). Validation capability consists of the mandatory fill, mandatory enter, and trigger attributes. If the task is not initiated from a terminal, INVREQ occurs.

Conditions

INVREQ
RESP2 values:

1 The task does not have a signed-on user.
2 No BMS command has yet been issued, BMS routing is in effect, or no map has yet been positioned.
3 No batch data interchange (BDI) command has yet been issued.
4 The task is not initiated by automatic transaction initiation (ATI).
5 The task is not associated with a terminal; or the task has no principal facility; or the principal facility is not an MRO, LU6.1, or APPC session.
6 A CICS BTS request is issued from outside the CICS BTS environment. (Therefore, it is not executing on behalf of a BTS activity.)

200 Command syntax options are not allowed in a server program invoked by a distributed program link.

Default action: terminate the task abnormally.

Examples

An example of RETURNPROG:

Program A links to program B
Program B links to program C
Program C transfers control to program D
Program D issues an ASSIGN RETURNPROG command, and CICS returns the name of Program B.
BIF DEEDIT

Deediting (built-in function).

\[
\text{EXEC CICS BIF DEEDIT} \\
\quad \text{FIELD(CONTG)} \\
\quad \text{LENGTH(9)}
\]

This removes all characters other than digits from CONTG, a 9-byte field, and returns the edited result in that field to the application program. Two examples of the contents of CONTG before and after execution of the command are:

<table>
<thead>
<tr>
<th>Original value</th>
<th>Returned value</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-6704/B</td>
<td>001467048</td>
</tr>
<tr>
<td>$25.68</td>
<td>000002568</td>
</tr>
</tbody>
</table>

Note that a decimal point is an EBCDIC special character and as such is removed.

Options

FIELD\((data\text{-area})\)
- specifies the field to be edited.

LENGTH\((data\text{-value})\)
- specifies the field length in bytes.

Conditions

LENGERR
- occurs if the LENGTH value is less than 1.
 Default action: terminate the task abnormally.
BUILD ATTACH (LUTYPE6.1)

Specify values for an LUTYPE6.1 attach header.

```
 بناءات التحقق لـ (LUTYPE6.1)
```

Description

BUILD ATTACH (LUTYPE6.1) specifies a set of values to be placed in the named attach header control block. This control block contains values that are to be sent in an LUTYPE6.1 attach FMH (Function Management Header) that is constructed by CICS, and is sent only when a SEND ATTACHID or CONVERSE ATTACHID command is executed. The specified values override existing values in the control block; unspecified values are set to default values.

Options

ATTACHID(name)

specifies that the set of values is to be placed in an attach header control block identified by the specified name (1–8 characters).

DATASTR(data-value)

corresponds to the data stream profile field, ATTDSP, in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, no particular significance is attached by CICS to the data stream profile field in an attach FMH. For most CICS applications, the option can be omitted.

Information about CICS to IMS communication is given in the CICS Intercommunication Guide. For details of communication between a CICS system and any other subsystem, including details of structured fields and logical record management, refer to documentation supplied by the subsystem about how to use the data stream profile field in an attach FMH.

The “data-value” is a halfword binary. Only the low-order byte is used. The SNA-defined meanings of the bits are as follows:

```
0–7 reserved - must be set to zero
8–11 0000 - user-defined
      1111 - SCS data stream
      1110 - 3270 data stream
      1101 - structured field
      1100 - logical record management
12–15 defined by the user if bits 8–11 are set to 0000; otherwise reserved
       (must be set to zero)
```

A value of “structured field” indicates that chains begin with four bytes of data that are used to interpret the following data: overall length (2 bytes), class identifier (1 byte), and subclass identifier (1 byte). A value of “logical record management” indicates that chains can be split into separate fields by the data receiver.

If the option is omitted, a value of “user-defined” is assumed.

IUTYPE(data-value)

corresponds to the interchange unit field, ATTIU, in an LUTYPE6.1 attach FMH.

The “data-value” is a halfword binary. Only the low-order 7 bits are used. The SNA-defined meanings of the bits are as follows:

```
0–10 reserved - must be set to zero
11 0 - not end of multichain interchange unit
    1 - end of multichain interchange unit
12,13 reserved - must be set to zero
14,15 00 - multichain interchange unit
       01 - single-chain interchange unit
       10 - reserved
       11 - reserved
```
If the option is omitted, values of “not end of multichain interchange unit” and “multichain interchange unit” are assumed.

PROCESS(name)

- Corresponds to the process name, ATTDPN, in an LUTYPE6.1 attach FMH.
- For communication between two CICS systems, a transaction running in one system can acquire a session to the second system and can identify the transaction to be attached; in the second system, the identification is carried in the first chain of data sent across the session.
- In general, the first four bytes of data identify the transaction to be attached. However, an attach FMH, identifying the transaction to be attached, can be built and sent; the PROCESS option is used to specify the transaction name. (Note that the receiving CICS system uses just the first four bytes of the process name as a transaction name.)
- No significance is attached by CICS to process names in attach FMHs sent in chains of data other than the first.
- For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the process name field in an attach FMH.

QUEUE(name)

- Corresponds to the queue name, ATTDQN, in an LUTYPE6.1 attach FMH.
- For communication between two CICS systems, no significance is attached by CICS to the queue name in an attach FMH.
- For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the queue name field in an attach FMH.

RECFM(data-value)

- Corresponds to the deblocking algorithm field, ATTDBA, in an LUTYPE6.1 attach FMH.
- For communication between two CICS systems, no particular significance is attached by CICS to the deblocking algorithm field in an attach FMH. For most CICS applications, the option can be omitted.
- The “data-value” is a halfword binary value. Only the low-order byte is used. The SNA-defined meanings of the bits are as follows:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–7</td>
<td>reserved - must be set to zero</td>
</tr>
<tr>
<td>8–15</td>
<td>X'00' - reserved</td>
</tr>
<tr>
<td></td>
<td>X'01' - variable-length</td>
</tr>
<tr>
<td></td>
<td>variable-blocked</td>
</tr>
<tr>
<td></td>
<td>X'02' - reserved</td>
</tr>
<tr>
<td></td>
<td>X'03' - reserved</td>
</tr>
<tr>
<td></td>
<td>X'04' - chain of RUs</td>
</tr>
<tr>
<td></td>
<td>X'05' through X'FF' - reserved</td>
</tr>
</tbody>
</table>

If the option is omitted, a value of “chain of RUs” is assumed.

RESOURCE(name)

- Corresponds to the resource name, ATTPRN, in an LUTYPE6.1 attach FMH.
- For communication between two CICS systems, no significance is attached by CICS to the resource name in an attach FMH.
- For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the resource name field in an attach FMH.

RPROCESS(name)

- Corresponds to the return-process name, ATTRDPN, in an LUTYPE6.1 attach FMH.
- For communication between two CICS systems, no significance is attached by CICS to the return-process name in an attach FMH.
- For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the return-process name field in an attach FMH.

RRESOURCE(name)

- Corresponds to the return-resource name, ATTRPRN, in an LUTYPE6.1 attach FMH.
- For communication between two CICS systems, no significance is attached by CICS to the return-resource name in an attach FMH.
- For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the return-resource name field in an attach FMH.
BUILD ATTACH (MRO)

Specify values for an MRO attach header.

```
<table>
<thead>
<tr>
<th>BUILD ATTACH — ATTACHID(name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS(name)</td>
</tr>
<tr>
<td>RESOURCE(name)</td>
</tr>
<tr>
<td>RPROCESS(name)</td>
</tr>
<tr>
<td>RRESOURCE(name)</td>
</tr>
<tr>
<td>QUEUE(name)</td>
</tr>
<tr>
<td>IUTYPE(data-value)</td>
</tr>
<tr>
<td>DATASTR(data-value)</td>
</tr>
<tr>
<td>RECFM(data-value)</td>
</tr>
</tbody>
</table>
```

Description

BUILD ATTACH (MRO) specifies a set of values to be placed in the named attach header control block. This control block contains values that are to be sent in an MRO attach FMH (Function Management Header) that is constructed by CICS, and is sent only when a SEND ATTACHID or CONVERSE ATTACHID command is executed. The specified values override existing values in the control block; unspecified values are set to default values.

For more information about MRO and IRC, see the *CICS Intercommunication Guide*.

Options

ATTACHID(name)
- Specifies that the set of values is to be placed in an attach header control block identified by the specified name (1–8 characters).

DATASTR(data-value)
- Corresponds to the data stream profile field, ATTDSP, in an LUTYPE6.1 attach FMH.

 For communication between two CICS systems, no particular significance is attached by CICS to the data stream profile field in an attach FMH. For most CICS applications, the option can be omitted.

 The “data-value” is a binary halfword. Only the low-order byte is used. The SNA-defined meanings of the bits are as follows:

 | 0–7 | reserved - must be set to zero |
 | 8–11 | 0000 - user-defined |
 | | 1111 - SCS data stream |
 | | 1110 - 2730 data stream |
 | | 1101 - structured field |
 | | 1100 - logical record management |
 | 12-15| defined by the user if bits 8–11 are set to 0000; otherwise reserved (must be set to zero) |

 A value of “structured field” indicates that chains begin with four bytes of data that are used to interpret the following data; overall length (2 bytes), class identifier (1 byte), and subclass identifier (1 byte). A value of “logical record management” indicates that chains can be split into separate fields by the data receiver.

 If the option is omitted, a value of “user-defined” is assumed.

IUTYPE(data-value)
- Corresponds to the interchange unit field, ATTIU, in an LUTYPE6.1 attach FMH.
 - The “data-value” is a halfword binary. Only the low-order 7 bits are used. The SNA-defined meanings of the bits are as follows:

 | 0-10 | reserved - must be set to zero |
 | 11 | 0 - not end of multichain interchange unit |
 | | 1 - end of multichain interchange unit |
 | 12,13| reserved - must be set to zero |
 | 14,15| 00 - multichain interchange unit |
 | | 01 - single chain interchange unit |
 | | 10 - reserved |
 | | 11 - reserved |

 If the option is omitted, values of “not end of multichain interchange unit” and “multichain interchange unit” are assumed.

PROCESS(name)
- Corresponds to the process name, ATTDPN, in an LUTYPE6.1 attach FMH.

 For communication between two CICS systems, a transaction running in one system can acquire a session to the second system and can identify the transaction to be attached; in the second system the identification is carried in the first chain of data sent across the session. In general, the first four bytes of data identify the transaction to be attached. However an attach FMH, identifying the transaction to be attached, can be built and sent; the PROCESS option is used to specify the transaction name. (Note that the receiving CICS system
uses just the first four bytes of the process name as a transaction name.)

No significance is attached by CICS to process names in attach FMHs sent in chains of data other than the first.

For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the process name field in an attach FMH.

QUEUE(*name*)

- corresponds to the queue name, ATTDQN, in an attach FMH.

For communication between two CICS systems, no significance is attached by CICS to the queue name in an attach FMH.

For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the queue name field in an attach FMH.

RECFM(*data-value*)

- corresponds to the deblocking algorithm field, ATTDBA, in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, no particular significance is attached by CICS to the deblocking algorithm field in an attach FMH. For most CICS applications, the option can be omitted.

The “data-value” is a halfword binary value. Only the low-order 8 bits are used. The SNA-defined meanings of the bits are as follows:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–7</td>
<td>reserved - must be set to zero</td>
</tr>
<tr>
<td>8–15</td>
<td>X'00' - reserved</td>
</tr>
<tr>
<td></td>
<td>X'01' - variable-length</td>
</tr>
<tr>
<td></td>
<td>variable-blocked</td>
</tr>
<tr>
<td></td>
<td>X'02' - reserved</td>
</tr>
<tr>
<td></td>
<td>X'03' - reserved</td>
</tr>
<tr>
<td></td>
<td>X'04' - chain of RUs</td>
</tr>
<tr>
<td></td>
<td>X'05' to X'FF' - reserved</td>
</tr>
</tbody>
</table>

If the option is omitted, a value of “chain of RUs” is assumed.

RESOURCE(*name*)

- corresponds to the resource-name, ATTPRN, in an LUTYPE6.1 attach FMH.

RPROCESS(*name*)

- corresponds to the return-process name, ATTRDPN, in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, no significance is attached by CICS to the return-process name in an attach FMH.

For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the return-process name field in an attach FMH.
CANCEL

Cancel interval control requests.

OPTIONS

CANCEL [REQID(name)] [SYSID(systemname)] [TRANSID(name)]

Conditions: ISCINVREQ, NOTAUTH, NOTFND, SYSIDERR

Note for dynamic transaction routing

Using CANCEL with REQID (of a POST, DELAY, or START) could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the CICS Application Programming Guide for more information about transaction affinities.

Description

CANCEL cancels a previously issued DELAY, POST, or START command. If you include the SYSID option, the command is shipped to a remote system. If you omit SYSID, the TRANSID option, if present, indicates where the command is to be executed. The effect of the cancelation varies depending on the type of command being canceled, as follows:

- A DELAY command can be canceled only before it has expired, and only by a task other than the task that issued the DELAY command (which is suspended for the duration of the request). The REQID used by the suspended task must be specified. The effect of the cancelation is the same as an early expiration of the original DELAY. That is, the suspended task becomes dispatchable as though the original expiration time had been reached.

- When a POST command issued by the same task is to be canceled, no REQID need be specified. Cancelation can be requested either before or after the original request has expired. The effect of the cancelation is as if the original request had never been made.

- When a POST command issued by another task is to be canceled, the REQID of that command must be specified. The effect of the cancelation is the same as an early expiration of the original POST request. That is, the timer event control area for the other task is posted as though the original expiration time had been reached.

- When a START command is to be canceled, the REQID associated with the original command must be specified. The effect of the cancelation is as if the original command had never been issued. The cancelation is effective only before the original command has been honored.

OPTIONS

REQID(name)

specifies a name (1–8 characters), which should be unique, to identify a command. This name is used as a temporary storage identifier. The temporary storage queue thus identified must be defined as a local queue on the CICS system where the CANCEL command is processed.

This option cannot be used to cancel a POST command issued by the same task (for which, the REQID option is ignored if it is specified).

SYSID(systemname)

(remote systems only) specifies the name (1–4 characters) of the system for the CANCEL command.

TRANSID(name)

specifies the symbolic identifier (1–4 characters) of a transaction to be used to determine where the CANCEL command is to be executed, if SYSID is not specified. If the TRANSID is defined as REMOTE, the CANCEL request is function-shipped to the remote system.

Conditions

ISCINVREQ

occurs when the remote system indicates a failure that does not correspond to a known condition.

Default action: terminate the task abnormally.

NOTAUTH

occurs when a resource security check has failed on the specified TRANSID or on the TRANSID of the START command that corresponds to the request identification.

Default action: terminate the task abnormally.
NOTFND
occurs if the request identifier specified fails to match an unexpired interval control command.
Default action: terminate the task abnormally.

SYSIDERR
occurs when the SYSID option specifies a name that is neither the local system nor a remote system (made known to CICS by defining a CONNECTION). It also occurs when the link to the remote system is closed.
Default action: terminate the task abnormally.
CHANGE PASSWORD

Change the password recorded by an external security manager (ESM) for a specified userid.

```
CHANGE PASSWORD(data-value)\nNEWPASSWORD(data-value)\nUSERID(data-value)\nESMREASON(data-area)
```

Conditions: INVREQ, NOTAUTH, USERIDERR

Description

Unlike the SIGNON command, CHANGE PASSWORD does not depend upon the principal facility, so it can be issued when the facility is an APPC session.

Attention: You should clear the password fields on the EXEC CICS commands that have a password option as soon as possible after use. This is to ensure that passwords are not revealed in system or transaction dumps.

Options

Options ESMRESP and ESMREASON return the response and reason codes, if any, from the external security manager.

- **ESMREASON(data-area)**

 returns the reason code, in a fullword binary field, that CICS receives from the external security manager.

 If the ESM is RACF, this field is the RACF reason code.

- **ESMRESP(data-area)**

 returns the response code, in a fullword binary field, that CICS receives from the external security manager.

 If the ESM is RACF, this field is the RACF return code.

- **NEWPASSWORD(data-value)**

 specifies the new password, 8 characters, for the specified userid. The password is changed only if the current password is correctly specified.

- **PASSWORD(data-value)**

 specifies the current password, 8 characters, for the specified userid.

- **USERID(data-value)**

 specifies the userid, 8 characters, of the user whose password is being changed.

Conditions

INVREQ

 RESP2 values:

 13 There is an unknown return code in ESMRESP from the external security manager.

 18 The CICS external security manager interface is not initialized.

 29 The external security manager is not responding.

 Default action: terminate the task abnormally.

NOTAUTH

 RESP2 values:

 2 The supplied password is wrong. If the external security manager is RACF, the revoke count maintained by RACF is incremented.

 4 The new password is not acceptable.

 19 The USERID is revoked.

 22 The change password request failed during SECLABEL processing.

 31 The user is revoked in the connection to the default group.

 Default action: terminate the task abnormally.

USERIDERR

 RESP2 values:

 8 The USERID is not known to the external security manager.

 Default action: terminate the task abnormally.
CHANGE TASK

Change priority of a task.

Description

CHANGE TASK changes the priority of the issuing task. It has immediate effect (unlike SET TASK), because control is relinquished during execution of the command so that the current task has to be rescheduled. The rescheduling does not happen until tasks that are of higher or equal priority, and that are also ready to run, are dispatched.

If you omit the PRIORITY option, the task does not lose control and the priority remains the same. This is effectively a no-op.

Options

PRIORITY(data-value)

specifies a fullword binary value in the range 0–255, defining the priority of the task. You can also have a value of −1 but this does not change the priority or cause a reschedule.

Conditions

INVREQ

RESP2 values:

1 Your PRIORITY value is outside the range -1–255.
CONNECT PROCESS

Initiate APPC mapped conversation.

```
CONNECT PROCESS
  CONVID(name)  PRONAME(data-area)  PROLENGTH(data-value)
  SESSION(name)  PARTNER(name)
  PIPLIST(data-area)  PIPLENGTH(data-value)  SYNCLEVEL(data-value)  STATE(cvda)
```

Conditions: INVREQ, LENGERR, NOTALLOC, PARTNERIDERR, TERMERR

Description

CONNECT PROCESS allows an application to specify a process name and synchronization level to be passed to CICS and used when the remote partner is attached.

Options

CONVID(name)
identifies the conversation to which the command relates. The 4-character name specifies the token returned by a previously executed ALLOCATE command in EIBRSRC in the EIB.

For compatibility with earlier releases, SESSION is accepted as a synonym for CONVID. New programs should use CONVID.

PARTNER(name)
specifies the name (8 characters) of a set of definitions that includes the name (or extended name) of a remote partner transaction (TPNAME or XTPNAME). You can use this option as an alternative to PROCNAME and PROCLENGTH.

PIPLENGTH(data-value)
specifies the total length (halfword binary value) of the specified process initialization parameter (PIP) list.

PIPLIST(data-area)
specifies the PIP data to be sent to the remote system. The PIP list consists of variable-length records, each containing a single PIP. A PIP starts with a 2-byte inclusive length field (LL), followed by a 2-byte reserved field, and then the parameter data.

PROCLENGTH(data-value)
specifies the length (as a halfword binary value in the range 1–64) of the name specified by the PROCNAME option.

PROCNAME(data-area)
specifies the partner process (that is, the transaction) to be attached in the remote system.

One byte is sufficient to identify a CICS transaction. The APPC architecture allows a range of 1–64 bytes but leaves each product free to set its own maximum. CICS complies by allowing a range of 1–64 bytes. If the remote system is CICS, this option can specify the 4-byte transaction identifier or the TPNAME value given in the relevant TRANSACTION definition. Alternatively, you can examine the full identifier by coding the user exit XZCATT.

No character checking is performed on the TPN by CICS.

For programming information about the user exit XZCATT, see the CICS Customization Guide.

SESSION(name)
specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used.

STATE(cvda)
gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNFRECEIVE
- SYNCSEND

SYNCLEVEL(data-value)
specifies the synchronization level (halfword binary value) for the current conversation. The possible values are:

- 0 None
- 1 Confirm
Conditions

INVREQ

RESP2 values:

200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

also occurs (RESP2 not set) in any of the following situations:

• A synchronization level other than 0, 1, or 2, has been requested in the SYNCLEVEL option.
• The command is not valid for the terminal or LU in use.
• The command has been used on a conversation that is in use by CPI-Communications or that is an APPC basic conversation. In the latter case, GDS CONNECT PROCESS should have been used.

Default action: terminate the task abnormally.

LENGERR

occurs in any of the following situations:

• An out-of-range value is supplied in the PROCLENGTH option.
• The value specified in the PIPLENGTH option is less than 0.
• The value specified in the PIPLENGTH option exceeds the CICS implementation limit of 32763.
• A PIPLIST length element (LL) has a value less than 4.
• The sum of the length elements (LLs) in the PIPLIST does not equal the value specified by PIPLENGTH.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the specified CONVID value does not relate to a conversation owned by the application.

Default action: terminate the task abnormally.

PARTNERIDERR

occurs if the name specified in the PARTNER option is not recognized by CICS.

Default action: terminate the task abnormally.

TERMERR

occurs for a session-related error. Any action on that conversation other than a FREE causes an ATCV abend.

A CANCEL TASK request by a user node error program (NEP) can cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.
CONVERSE (VTAM)

CONVERSE (VTAM default)

Communicate on standard CICS terminal support.

```
CONVERSE FROM(data-area) FROMLENGTH(data-value) INTO(data-area) TOLENGTH(data-area)
```

Conditions: LENGERR

This form of the CONVERSE command is used by all CICS-supported VTAM terminals for which the other CONVERSE descriptions are not appropriate.

CONVERSE (APPC)

Communicate on an APPC mapped conversation.

```
CONVERSE FROM(data-area) FROMLENGTH(data-value) INTO(data-area) TOLENGTH(data-area)
```

Conditions: EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

Description

CONVERSE sends, then receives, data on an APPC mapped conversation.
CONVERSE (LUTYPE2/LUTYPE3)

Communicate on a 3270-display logical unit (LUTYPE2) or 3270-printer logical unit (LUTYPE3).

Conditions: EOC, LENGERR, TERMERR

Description

CONVERSE communicates on a 3270-display logical or 3270-printer logical unit.

CONVERSE (LUTYPE4)

Communicate on an LUTYPE4 logical unit.

Conditions: EOC, EODS, IGREQCD, INBFMH, LENGERR, SIGNAL, TERMERR

Description

CONVERSE communicates on an LUTYPE4 logical unit.
CONVERSE (VTAM)

CONVERSE (LUTYPE6.1)

Communicate on an LUTYPE6.1 logical unit.

Description

CONVERSE communicates on an LUTYPE6.1 logical unit.

CONVERSE (SCS)

Communicate on a 3270 SCS printer logical unit.

Description

CONVERSE communicates on a 3270 SNA character string (SCS) printer logical unit. The SCS printer logical unit accepts a character string as defined by Systems Network Architecture (SNA). Some devices connected under SNA can send a signal that can be detected by the HANDLE CONDITION SIGNAL command, which in turn can invoke an appropriate handling routine. If necessary, a WAIT SIGNAL command can be used to make the application program wait for the signal. The PA keys on a 3287 can be used in this way, or with a RECEIVE command.
CONVERSE (3270 logical)

Communicate on a 3270 logical unit.

```
CONVERSE FROM(data-area) FROMLENGTH(data-value) INTO(data-area)
FROMFLENGTH(data-value) SET(ptr-ref) INTO(data-area) TOLENGTH(data-area)

ERASE DEFAULT ALTERNATE

MAXLENGTH(data-value) DEFRESP NOTRUNCATE ASIS

MAXFLENGTH(data-value)
```

Conditions: INVREQ, LENGERR, TERMERR

Description
CONVERSE communicates on a 3270 logical unit.

CONVERSE (3600-3601)

Communicate on a 3600 (3601) logical unit.

```
CONVERSE FROM(data-area) FROMLENGTH(data-value) INTO(data-area)
FROMFLENGTH(data-value) SET(ptr-ref) INTO(data-area) TOLENGTH(data-area)

LDC(name) DEFRESP MAXLENGTH(data-value)

MAXFLENGTH(data-value)
```

Conditions: EOC, EODS, INBFMH, LENGERR, SIGNAL, TERMERR

Description
CONVERSE communicates on a 3600 logical unit. This form of the CONVERSE command also applies to the 3630 plant communication system.

A logical device code (LDC) is a code that can be included in an outbound Function Management Header (FMH) to specify the disposition of the data (for example, to which subsystem terminal it should be sent). Each code can be represented by a unique LDC mnemonic.

The installation can specify up to 256 2-character mnemonics for each TCTTE, and two or more TCTTEs can share a list of these mnemonics. A numeric value (0 through 255) corresponds to each LDC mnemonic for each TCTTE.

A 3600 device and a logical page size are also associated with an LDC. “LDC” or “LDC value” is used in this book to refer to the code specified by the user; “LDC mnemonic” refers to the 2-character symbol that represents the LDC numeric value.
When the LDC option is specified in the CONVERSE command, the numeric value associated with the mnemonic for the particular TCTTE is inserted in the FMH. This value is chosen by the installation, and is interpreted by the 3601 application program.

CONVERSE (3600-3614)

Communicate on a 3600 (3614) logical unit.

Description

CONVERSE communicates on a 3600 logical unit.

The data stream and communication format used between a CICS application program and a 3614 is determined by the 3614. The application program is therefore device-dependent when handling 3614 communication.

For further information about designing 3614 application programs for CICS, refer to the *IBM 4700/3600/3630 Guide*.

CONVERSE (3650 interpreter)

Communicate on a 3650 interpreter logical unit.

Description

CONVERSE communicates on a 3650 interpreter logical unit.
CONVERSE (3650-3270)

Communicate on a 3650 host conversational (3270) logical unit.

Conditions: LENGERR, TERMERR

Description

CONVERSE communicates on a 3650 host conversational logical unit.

CONVERSE (3650-3653)

Communicate on a 3650 host conversational (3653) logical unit.

Conditions: EOC, LENGERR, TERMERR

Description

CONVERSE communicates on a 3650 host conversational logical unit.
CONVERSE (VTAM)

CONVERSE (3650-3680)

Communicate on a 3650 host command processor (3680) logical unit.

```
CONVERSE FROM(data-area) FROMLENGTH(data-value) INTO(data-area) TOLENGTH(data-area)
FMH DEFRESP MAXLENGTH(data-value) MAXLENGTH(data-value) NOTRUNCATE
```

Conditions: LENGERR, TERMERR

Description

CONVERSE communicates on a 3650 host command processor logical unit.

CONVERSE (3767)

Communicate on a 3767 interactive logical unit.

```
CONVERSE FROM(data-area) FROMLENGTH(data-value) INTO(data-area) TOLENGTH(data-area)
DEFRESP MAXLENGTH(data-value) MAXLENGTH(data-value) NOTRUNCATE
```

Conditions: EOC, LENGERR, SIGNAL, TERMERR

Description

CONVERSE communicates on a 3767 interactive logical unit. This command also applies to the 3770 interactive logical unit.
CONVERSE (3770)

Communicate on a 3770 batch logical unit.

Conditions: EOC, EODS, INBFMH, LENGERR, SIGNAL, TERMERR

Description

CONVERSE communicates on a 3770 batch logical unit.

CONVERSE (3790 full-function or inquiry)

Communicate on a 3790 full-function or inquiry logical unit.

Conditions: EOC, EODS, INBFMH, LENGERR, SIGNAL, TERMERR

Description

CONVERSE communicates on a 3790 full-function or inquiry logical unit.
CONVERSE (VTAM)

CONVERSE (3790 3270-display)

Communicate on a 3790 (3270-display) logical unit.

Description

CONVERSE communicates on a 3790 logical unit.

Conditions: LENGERR, TERMERR
Options

ALTERNATE
sets the terminal to use the ALTERNATE screen size.

ASIS
indicates that output is to be sent in transparent mode (with no recognition of control characters and accepting any of the 256 possible combinations of eight bits as valid transmittable data).

Note: If you are using a katakana terminal, you might see some messages containing mixed English and katakana characters. That is because katakana terminals cannot display mixed-case output. Uppercase characters in the data stream appear as uppercase English characters, but lowercase characters appear as katakana characters. If this happens, ask your system programmer to specify MSGCASE=UPPER in the system initialization parameters so that messages contain uppercase characters only. This note applies to any command that is used to receive katakana characters, not just to CONVERSE commands.

ATTACHID(name)
specifies that an attach header (created by a BUILD ATTACH command) is to precede, and be concatenated with, the user data supplied in the FROM option. “name” (1–8 characters) identifies the attach header control block to be used in the local task.

CONVID(name)
identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

For compatibility with earlier releases, SESSION is accepted as a synonym for CONVID. New programs should use CONVID.

If the option is omitted, the principal facility for the task is used by default.

CTLCHAR(data-value)
specifies a 1-byte write control character (WCC) that controls the CONVERSE command. A COBOL user must specify a data area containing this character.

If the option is omitted, all modified data tags are reset to zero, and the keyboard is restored.

DEFAULT
sets the terminal to use the DEFAULT screen size.

DEFRESP
indicates that a definite response is required when the output operation has been completed.

DEST(name)
specifies the 4-byte symbolic name of the TCAM destination to which the message is to be sent. This option is meaningful only for terminals defined using DFHTCT TYPE=SDSCI with DEVICE=TCAM.

If you use the DEST option, you must be aware of any restrictions placed on device-dependent data streams by the message control facility in use. See the section on CICS-TCAM interface in the CICS Customization Guide for programming information.

ERASE
specifies that the screen printer buffer or partition is to be erased and the cursor returned to the upper left corner of the screen. (This option applies only to the 3270, or 8775, and to the 3604 Keyboard Display.)

The first output operation in any transaction, or in a series of pseudoconversational transactions, should always specify ERASE. For transactions attached to 3270 screens or printers, unless explicitly overridden by the DEFAULT or ALTERNATE option, this also ensures that the correct screen size is selected, as defined for the transaction by the SCRNSIZE option in the RDO PROFILE definition.

FMH
specifies that a function management header has been included in the data to be written. If the ATTACHID option is specified as well, the concatenated FMH flag is set in the attach FMH.

FROM(data-area)
specifies the data to be written to the terminal or logical unit, or sent to the partner transaction. This option may, when relevant, be omitted if ATTACHID is specified.

FROMLENGTH(data-value)
is a fullword alternative to FROMLENGTH.

FROMLENGTH(data-value)
specifies the length, as a halfword binary value, of the data. For a description of a safe upper limit, see “LENGTH options” on page 5.

INTO(data-area)
specifies the receiving field for the data read from the terminal or logical unit, or the application target data area into which data is to be received from the application program connected to the other end of the current conversation.

LDC(name)
specifies the 2-character mnemonic used to determine the appropriate logical device code (LDC) numeric value. The mnemonic identifies an LDC entry defined by a DFHTCT TYPE=LDC macro.

MAXFLENGTH(data-value)
is a fullword alternative to MAXLENGTH.
MAXLENGTH(data-value)
specifies the maximum amount (halfword binary value) of data that CICS is to recover in response to a CONVERSE (default) command. If INTO is specified, MAXLENGTH overrides the use of TOLENGTH as an input to CICS. If SET is specified, MAXLENGTH provides a way for the program to limit the amount of data it receives at one time.

If the value specified is less than zero, zero is assumed.

If the length of data exceeds the value specified and the NOTRUNCATE option is not present, the data is truncated to that value and the LENGERR condition occurs. The data area specified in the TOLENGTH option is set to the original length of data.

If the length of data exceeds the value specified and the NOTRUNCATE option is present, CICS retains the remaining data and uses it to satisfy subsequent RECEIVE commands. The data area specified in the TOLENGTH option is set to the length of data returned.

If no argument is coded for MAXLENGTH, CICS defaults to TOLENGTH.

NOTRUNCATE
specifies that, when the data available exceeds the length requested, the remaining data is not to be discarded but is to be retained for retrieval by subsequent RECEIVE commands.

SESSION(name)
specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used. If both this option and CONVID are omitted, the principal facility for the task is used.

SET(ptr-ref)
specifies the pointer reference to be set to the address of the data read from the terminal. pointer reference, unless changed by other commands or statements, is valid until the next CONVERSE (default) command or the end of task.

If DATALLOCATION(ANY) is associated with the application program, the address of the data can be above or below the 16MB line.

If DATALLOCATION(BELOW) is associated with the application program, and the data resides above the 16MB line, the data is copied below the 16MB line, and the address of this copy is returned.

If TASKDATAKEY(USER) is specified for the running task, and storage protection is active, the data returned is in a user-key. If TASKDATAKEY(CICS) is specified and storage protection is active, the data returned is in a CICS-key.

STATE(cvda)
gets the state of the current conversation. The cvda values returned by CICS are:

ALLOCATED
CONFFREE
CONFRECEIVE
CONFSEND
FREE
PENDFREE
PENDRECEIVE
RECEIVE
ROLLBACK
SEND
SYNCFREE
SYNCRECEIVE
SYNCSEND

STRFIELD
specifies that the data area specified in the FROM option contains structured fields. If this option is specified, the contents of all structured fields must be handled by the application program. The CONVERSE command must be used if the data area contains a read partition structured field. (Structured fields are described in the CICS 3270 Data Stream Device Guide.)

CTLCHAR and ERASE are mutually exclusive with STRFIELD, and their use with STRFIELD generates an error message.

TOFLENGTH(data-area)
is a fullword alternative to TOLENGTH.

TOLENGTH(data-area)
specifies the length (halfword binary value) of the data to be received. If you specify INTO, but omit MAXLENGTH, “data-area” specifies the maximum length that the program accepts. If the value is less than zero, zero is assumed.

If the length of the data exceeds the value specified, but NOTRUNCATE is omitted, the data is truncated to that value, and the LENGERR condition occurs. When the data is received, the data area is set to the length of the data.

For a description of a safe upper limit, see “LENGTH options” on page 5.

Conditions
Some of the following conditions can occur in combination with others. CICS checks for these conditions in the following order:

1. EODS
2. INBFMH
3. EOC.

If more than one occurs, only the first is passed to the application program. EIBRCODE, however, is set to indicate all the conditions that occurred.

CBIDERR
occurs if the requested attach header control block named in ATTACHID cannot be found.

Default action: terminate the task abnormally.
EOC
occurs when a request/response unit (RU) is received with the end-of-chain indicator set. Field EIBEOC also contains this indicator.
Default action: ignore the condition.

EODS
occurs when an end-of-data-set indicator is received.
Default action: terminate the task abnormally.

IGREQCD
occurs when an attempt is made to execute a CONVERSE command after a SIGNAL data-flow control command with a request change direction (RCD) code has been received from an LTYPE4 logical unit.
Default action: terminate the task abnormally.

INBFMH
occurs if a request/response unit (RU) contains a function management header (FMH). Field EIBFMH contains this indicator and it should be used in preference to INBFMH. The IGNORE CONDITION command can be used to ignore the condition.
Default action: terminate the task abnormally.

INVREQ
RESP2 values:

200 A distributed program link server application specified the function shipping session (its principal facility)

also occurs (RESP2 not set) in any of the following situations:

- The command is used on a conversation that is in use by CPI Communications, or that is an APPC basic conversation. In the latter case, the application should have issued a GDS SEND INVITE followed by a GDS RECEIVE.

Default action: terminate the task abnormally.

LENGERR
occurs in any of the following situations:

- Data received is discarded by CICS because its length exceeds the maximum that the program accepts (see TOLENGTH and MAXLENGTH options), and the NOTRUNCATE option is not specified.
- An out-of-range value is supplied in one of the options, FROMLENGTH, FROMFLENGTH, MAXLENGTH, MAXFLENGTH, TOLENGTH, or TOFLENGTH.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the facility specified in the command is not owned by the application, or does not relate to a conversation owned by the application.

Default action: terminate the task abnormally.

SIGNAL
occurs when an inbound SIGNAL data-flow control command is received from a logical unit or session, or the partner transaction. EIBSIG is always set when an inbound signal is received.
Default action: ignore the condition.

TERMERR
occurs for a terminal or session-related error. Any action on that conversation other than a FREE causes an ATCV abend.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.
Default action: terminate the task abnormally with abend code ATNI.
CONVERSE (non-VTAM)

CONVERSE (non-VTAM default)

Communicate on standard CICS terminal support.

CONVERSE communicates on an MRO session. For more information about MRO and IRC, see the CICS Intercommunication Guide.
CONVERSE (System/3)

Communicate on a System/3 terminal.

Description

CONVERSE communicates on a System/3 terminal. CONVERSE in this form also applies to the following devices:

- 2770 data communication system
- 2780 data transmission terminal
- 3660 supermarket scanning system
- 3780 communication terminal.

Conditions: LENGERR

CONVERSE (System/7)

Communicate on a System/7 terminal.

Description

CONVERSE communicates on a System/7 terminal. Transactions are normally initiated from the System/7 by issuing a 4-character transaction code that is transmitted in BCD mode. Pseudobinary mode can be used only while communicating with an active CICS transaction; it cannot be used to initiate the transaction. The message length is given as the number of words to be transmitted (not as the number of characters).

When a transaction is initiated on a System/7, CICS services that System/7 only for the duration of the transaction; that is, to ensure efficient use of the line, any other System/7s on the same line are locked out for the duration of the transaction. CICS application programs for the multipoint System/7 should be designed with the shortest possible execution time.

The first word (two characters) of every message sent to the System/7 must be an identification word, except words beginning with “@”, which are reserved by CICS.

Conditions: LENGERR
When the PSEUDOBIN option is specified on RECEIVE or SEND, the length of the data area provided by the application program must be at least twice that of the data to be read.

In the case of a System/7 on a dial-up (switched) line, the System/7 application program must, initially, transmit a four-character terminal identification. (This terminal identification is generated during preparation of the TCT through use of the DFHTCT TYPE=TERMINAL, TRMIDNT=parameter specification.) CICS responds with either a ‘ready’ message, indicating that the terminal identifier is valid and that the System/7 may proceed as if it were on a leased line, or an ‘INVALID TERMINAL IDENTIFICATION’ message, indicating that the terminal identifier sent by the System/7 did not match the TRMIDNT= parameter specification.

Whenever CICS initiates the connection to a dial-up System/7, CICS writes a null message, consisting of three idle characters, prior to starting the transaction. If there is no program resident in the System/7 capable of supporting the Asynchronous Communication Control Adapter (ACCA), BTAM error routines cause a data check message to be recorded on the CICS (host) system console. This is normal if the task initiated by CICS is to IPL the System/7. Although the data check message is printed, CICS ignores the error and continues normal processing. If a program capable of supporting the ACCA is resident in the System/7 at the time this message is transmitted, no data check occurs.

When a disconnect is issued to a dial-up System/7, the “busy” bit is sometimes left on in the interrupt status word of the ACCA. If the line connection is reestablished by dialing from the System/7 end, the ‘busy’ condition of the ACCA prevents message transmission from the System/7. To overcome this problem, the System/7 program must reset the ACCA after each disconnect and before message transmission is attempted. This can be done by issuing the following instruction:

```
PWRI 0,8,3,0   RESET ACCA
```

This procedure is not necessary when the line is reconnected by CICS (that is, by an automatically initiated transaction).

CONVERSE (2260)

Communicate on a 2260 or 2265 display station.

```
CONVERSE─FROM(data-area)─FROMLENGTH(data-value)─INTO(data-area)─TOLENGTH(data-area)

MAXLENGTH(data-value)─MAXFLENGTH(data-value)─NOTRUNCATE─CTLCHAR(data-value)─LINEADDR(data-value)

DEST(name)─LEAVEKB
```

Condition: LENGERR

CONVERSE communicates on a 2260 or 2265 display station.
CONVERSE (2741)

Communicate on a 2741 communication terminal.

```
CONVERSE─FROM(data-area)
        ─FROMLENGTH(data-value)
        ─INTO(data-area)
        ─TOLENGTH(data-area)
        ─MAXLENGTH(data-value)
        ─MAXFLENGTH(data-value)
        ─SET(ptr-ref)
        ─TOFLENGTH(data-area)
        ─NOTRUNCATE
        ─DEST(name)
```

Conditions: LENGERR, RDATT, WRBRK

Description

CONVERSE communicates on a 2741 terminal.

Read attention: If the terminal operator presses the attention key on the 2741 after typing a message, it is recognized as a read attention if:

- Read attention is supported by the system
- The message is read by a RECEIVE command.

When this occurs, control is transferred to a CICS read-attention exit routine, if it has been generated into the system. This routine is a skeleton program that can be tailored by the system programmer to carry out actions such as the following:

- Perform data analysis or modification on a read attention.
- Return a common response to the terminal operator following a read attention.
- Return a response and request additional input that can be read into the initial input area or into a new area.
- Request new I/O without requiring a return to the task to request additional input.

When the read-attention exit routine is completed, control is returned to the application program at the address specified in the HANDLE CONDITION RDATT command. The return is made when either of the following occurs:

- The exit routine issues no more requests for input.
- The exit routine issues a RECEIVE request and the operator terminates the input with a carriage return. (If the operator terminates the input with an attention, the exit routine is reentered and is free to issue another RECEIVE request.)

If a HANDLE CONDITION RDATT command is not included in the application program or read attention is not supported, the attention is treated as if the return key had been pressed.

Write break: If the terminal operator presses the attention key on the 2741 while a message is being received, it is recognized as a write break if:

- Write break is supported by the system.
- A HANDLE CONDITION WRBRK command is active in the application program.

When this occurs, the remaining portion of the message is not sent to the terminal. The write is terminated as though it were successful, and a new-line character ('X'15') is sent to cause a carrier return. Control is returned to the application program at the address specified for the WRBRK condition.

If a HANDLE CONDITION WRBRK command is not included in the application program or if write break is not supported, the break is treated as an I/O error.
CONVERSE (non-VTAM)

CONVERSE (2770)

Description

The support and command syntax for 2770 is the same as for System/3, see “CONVERSE (System/3)” on page 55.

The 2770 recognizes a read interrupt and responds by transmitting the contents of the I/O buffer. After the contents of the buffer have been transmitted, the 2770 responds to the next read continue with an EOT. If the I/O buffer is empty, the 2770 transmits an EOT. CICS issues a read interrupt and read continue to relinquish use of the line and to enable the application program to write to the 2770.

Input from a 2770 consists of one or more logical records. CICS provides one logical record for each read request to the application program. The size of a logical record cannot exceed the size of the I/O buffer. If the input spans multiple buffers, multiple reads must be issued by the application program.

The 2265 component of the 2770 Data Communication System is controlled by data stream characters, not by BTAM macros; appropriate screen control characters should be included in the output area.

For 2770 input, data is deblocked to ETX, ETB, RS, and US characters. These characters are moved with the data to the input area but are not included in the data length; characters such as NL, CR, and LF are passed in the input area as data.

CONVERSE (2780)

The support and command syntax for 2780 is the same as for System/3, see “CONVERSE (System/3)” on page 55.

Output to a 2780 requires that the application program contains an appropriate “escape sequence” for component selection associated with the output message. For details of the 2780, see the publication IBM 2780 Data Transmission Terminal: Component Description manual.
CONVERSE (3270 display)

Communicate on a 3270 information display system (TCAM).

```plaintext
CONVERSE FROM(data-area) FROMLENGTH(data-value) INTO(data-area) TOLENGTH(data-area)
MAXLENGTH(data-value) MAXFLENGTH(data-value) SET(ptr-ref) TOFLENGTH(data-area)
MAXLENGTH(data-value) NOTRUNCATE ERASE DEFAULT ALTERNATE CTLCHAR(data-value)
DEST(name) ASIS
```

Condition: LENGERR

Description

CONVERSE communicates on a 3270 information display system.

CONVERSE (3600 BTAM)

Communicate on a 3600 finance communication system (BTAM) - only valid for remote terminals.

```plaintext
CONVERSE FROM(data-area) FROMLENGTH(data-value) INTO(data-area) TOLENGTH(data-area)
MAXLENGTH(data-value) MAXFLENGTH(data-value) SET(ptr-ref) TOFLENGTH(data-area)
MAXLENGTH(data-value) NOTRUNCATE ASIS
```

Condition: LENGERR

Description

CONVERSE communicates on a 3600 finance communication system. This form of the CONVERSE command also applies to the 4700 finance communication system. See “BTAM programmable terminals” on page 404.

Input: The unit of transmission from a 3601 Finance Communication Controller to CICS is a segment consisting of the start-of-text data-link control character (STX), the 1-byte identification of the 3600 logical workstation that issued the processor write, the data, and either an end-of-block (ETB) or an end-of-text (ETX) control character.

A logical workstation sends a message either in one segment, in which case the segment ends with ETX, or in more than one segment, in which case only the last segment ends with ETX, all others ending with ETB.

The input area passed to the user-written application program consists of the data only. The 1-byte field TCTTEDLM, which can be obtained using an ASSIGN DELIMITER command, contains flags describing the data-link control character (ETB, ETX, or IRS) that ended the segment. The application program can issue terminal control commands to read the data until it receives a segment ending with ETX. If blocked data is transmitted, it is received by CICS as blocks of segments. Only the first
segment in a block starts with the STX control character, and all segments are separated by IRS characters. None of the segments contains ETB or ETX characters except the last, which has the ETX character.

For blocked input, the flags in TCTTEDLM only indicate end of segment, not end of message. The CICS application program still receives only the data, but user-defined conventions may be required to determine the end of the message.

The field TCTTEDLM also indicates the mode of the input, either transparent or nontransparent. Blocked input is nontransparent.

The terminal control facility does not pass input containing a start-of-header (SOH) data-link control character to a user-written application program. If it receives an SOH, it sets an indicator in TCTTEDLM, passes the input to the user exit in the terminal control facility, and then discards it.

Output: When an application program issues a SEND command, the terminal control facility determines, from the value specified in the BUFFER parameter of the DFHTCT TYPE=TERMINAL system macro, the number of segments to be built for the message. It sends the message to the 3600 logical unit either in one segment consisting of a start-of-text character (STX), the data, and an end-of-text character (ETX); or in more than one segment, in which case only the last ends with ETX, all others ending with ETB.

The host input buffer of the 3600 controller and the input segment of the receiving logical unit must be large enough to accommodate the data sent by CICS. However, space for the data-link control characters need not be included. The 3600 application program reads the data from the host, by means of an LREAD, until it has received the entire message.

CICS system output messages begin with DFH followed by a 2-byte component id, 4-byte message number and the message text. These messages are sent in nontransparent mode. CICS user-written application programs should not send messages starting with DFH to the 3601.

Resend message: When a logical unit sends a message to the host and a ‘short on storage’ condition exists or the input is unsolicited (the active task associated with the terminal has not issued a read), the terminal control facility sends a “resend” message to the logical unit. No message is sent to the destinations CSMT or CSTL.

The first eight bytes of data sent to CICS can be used by the 3600 application program to define a convention to associate responses received from CICS with transactions sent to the host; for example, sequence numbers could be used.

If a CICS user-written application program has already issued a SEND command when a resend situation occurs, the resend message is not sent to the 3601 until the user-written application program message has been sent. A 3600 logical unit cannot receive a resend message while receiving a segmented message.

Only one resend message at a time can be queued for a logical unit. If a second resend situation occurs before CICS has written the first, a resend message is sent containing the eight bytes of data that accompanied the second input transaction from the 3600 logical unit.

The resend message is sent in transparent mode if the input data from the 3601 to be retransmitted is received by CICS in transparent mode. Otherwise it is sent in nontransparent mode.
CONVERSE (3735)

Communicate on a 3735 programmable buffered terminal.

Description

CONVERSE communicates on a 3735 programmable buffered terminal. The 3735 programmable buffered terminal may be serviced by CICS in response to terminal-initiated input (automatic answering), or as a result of an automatic calling or time-initiated transaction.

CONVERSE (3740)

Communicate on a 3740 data entry system.

Description

CONVERSE communicates on a 3740 data entry system.

In batch mode, many files are exchanged between the 3740 and CICS in a single transmission. The transmission of an input batch must be complete before an output transmission can be started.
CONVERSE (non-VTAM)

Options

ALTERNATE
set the terminal to use the ALTERNATE screen size.

ASIS
indicates that output is to be sent in transparent mode (with no recognition of control characters and accepting any of the 256 possible combinations of eight bits as valid transmittable data).

Note: If you are using a katakana terminal, you might see some messages containing mixed English and katakana characters. That is because katakana terminals cannot display mixed-case output. Uppercase characters in the data stream appear as uppercase English characters, but lowercase characters appear as katakana characters. If this happens, ask your system programmer to specify MSGCASE=UPPER in the system initialization parameters so that messages contain uppercase characters only.

ATTACHID *(name)*
specifies that an attach header (created by a BUILD ATTACH command) is to precede, and be concatenated with, the user data supplied in the FROM option. "name" (1–8 characters) identifies the attach header control block to be used in the local task.

CONVID *(name)*
identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

CTLCHAR *(data-value)*
specifies a 1-byte write control character (WCC 1) that controls the CONVERSE command. A COBOL user must specify a data area containing this character. If the option is omitted, all modified data tags are reset to zero and the keyboard is restored.

DEFAULT
set the terminal to use the DEFAULT screen size.

DEFRESP
indicates that a definite response is required when the output operation has been completed.

DEST *(name)*
specifies the 4-byte symbolic name of the TCAM destination to which the message is to be sent. This option is meaningful only for terminals defined using DFHTCT TYPE=SDSCI with DEVICE=TCAM.

If you use the DEST option, you must be aware of any restrictions placed on device-dependent data streams by the message control facility in use. See the section on the CICS-TCAM interface in the CICS Customization Guide for programming information.

ERASE
specifies that the screen printer buffer or partition is to be erased and the cursor returned to the upper left corner of the screen. (This option applies only to the 3270, or 8775, and to the 3604 Keyboard Display.)

The first output operation in any transaction, or in a series of pseudoconversational transactions, should always specify ERASE. For transactions attached to 3270 screens or printers, unless explicitly overridden by the DEFAULT or ALTERNATE option, this also ensures that the correct screen size is selected, as defined for the transaction by the SCRNSIZE option in the RDO PROFILE definition.

FMH
specifies that a function management header has been included in the data to be written. If the ATTACHID option is specified as well, the concatenated FMH flag is set in the attach FMH.

FROM *(data-area)*
specifies the data to be written to the terminal or logical unit, or sent to the partner transaction. This option may, when relevant, be omitted if ATTACHID is specified.

FROMLENGTH *(data-value)*
is a fullword alternative to FROMLENGTH.

FROMLENGTH *(data-value)*
specifies the length, as a halfword binary value, of the data to be written. If you use this option, you must also specify FROM. For a description of a safe upper limit, see “LENGTH options” on page 5.

INTO *(data-area)*
specifies the receiving field for the data read from the logical unit or terminal.

LINEADDR *(data-value)*
specifies that the writing is to begin on a specific line of a 2260/2265 screen. The data value is a halfword binary value in the range 1 through 12 for a 2260, or 1 through 15 for a 2265.

MAXLENGTH *(data-value)*
is a fullword alternative to MAXLENGTH.

MAXLENGTH *(data-value)*
specifies the maximum amount (halfword binary value) of data that CICS is to recover in response to a CONVERSE command. If INTO is specified,

1 Documented in the IBM 3270 Data Stream Programmer's Reference manual.
MAXLENGTH overrides the use of TOLENGTH as an input to CICS. If SET is specified, MAXLENGTH provides a way for the program to limit the amount of data it receives at one time.

If the value specified is less than zero, zero is assumed.

If the length of data exceeds the value specified and the NOTRUNCATE option is not present, the data is truncated to that value and the LENGERR condition occurs. The data area specified in the TOLENGTH option is set to the original length of data.

If the length of data exceeds the value specified and the NOTRUNCATE option is present, CICS retains the remaining data and uses it to satisfy subsequent RECEIVE commands. The data area specified in the TOLENGTH option is set to the length of data returned.

If no argument is coded for MAXLENGTH, CICS defaults to TOLENGTH.

NOTRUNCATE

specifies that, when the data available exceeds the length requested, the remaining data is not to be discarded but retained for retrieval by subsequent RECEIVE commands.

PSEUDOBIN

specifies that the data being read and written is to be translated from System/7 pseudobinary representation to hexadecimal.

SESSION(name)

specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used. If both this option and CONVID are omitted, the principal facility for the task is used.

SET(ptr-ref)

specifies a pointer reference to be set to the address of data received from the conversation partner in an MRO conversation. The pointer reference, unless changed by other commands or statements, is valid until the next CONVERSE (MRO) command or the end of task.

If DATALLOCATION(ANY) is associated with the application program, the address of the data can be above or below the 16MB line.

If DATALLOCATION(BELOW) is associated with the application program, and the data resides above the 16MB line, the data is copied below the 16MB line, and the address of this copy is returned.

If TASKDATAKEY(USER) is specified for the running task, and storage protection is active, the data returned is in a user-key. If TASKDATAKEY(CICS) is specified and storage protection is active, the data returned is in a CICS-key.

STATE(cvda)

gets the state of the transaction program. The cvda values returned by CICS are:

- ALLOCATED
- FREE
- PENDFREE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNCSEND

STRFIELD

specifies that the data area specified in the FROM option contains structured fields. If this option is specified, the contents of all structured fields must be handled by the application program. The CONVERSE command, rather than a SEND command, must be used if the data area contains a read partition structured field. (Structured fields are described in the CICS 3270 Data Stream Device Guide.)

CTLCHAR and ERASE are mutually exclusive with STRFIELD, and their use with STRFIELD generates an error message.

TOLENGTH(data-area)

is a fullword alternative to TOLENGTH.

TOLENGTH(data-area)

specifies the length, as a halfword binary value, of the data to be received. If you specify INTO, but omit MAXLENGTH, "data-area" specifies the maximum length that the program accepts. If the value is less than zero, zero is assumed.

If the length of the data exceeds the value specified, but NOTRUNCATE is omitted, the data is truncated to that value, and the LENGERR condition occurs. When the data is received, the data area is set to the length of the data.

For a description of a safe upper limit, see “LENGTH options” on page 5.

Conditions

Some of the following conditions can occur in combination with others. CICS checks for these conditions in the following order:

1. INBFMH
2. EOC

If more than one occurs, only the first is passed to the application program. EIBRCODE, however, is set to indicate all the conditions that occurred.

CBIDERR

occurs if the requested attach header control block named in ATTACHID cannot be found.

Default action: terminate the task abnormally.
CONVERSE (non-VTAM)

EOC
occurs when a request/response unit (RU) is received with the end-of-chain indicator set. Field EIBEOC also contains this indicator.
Default action: ignore the condition.

EOF (not TCAM)
occurs when an end-of-file indicator is received.
Default action: terminate the task abnormally.

INBFMH
occurs if a request/response unit (RU) contains a function management header (FMH). Field EIBFMH contains this indicator and it should be used in preference to INBFMH. The IGNORE CONDITION command can be used to ignore the condition.
Default action: terminate the task abnormally.

LENGERR
occurs in any of the following situations:

- Data is discarded by CICS because its length exceeds the maximum that the program accepts and the NOTRUNCATE option is not specified.
- An out-of-range value is supplied in the FROMLENGTH option.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the facility specified in the command is not owned by the application.
Default action: terminate the task abnormally.

RDATT (not TCAM)
occurs if the “receive” part of the conversation is terminated by the attention (ATTN) key rather than the return key.
Default action: ignore the condition.

TERMERR
occurs for a session-related error.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.
Default action: terminate the task abnormally with abend code ATNI.

WRBRK
occurs if the “send” part of the conversation is terminated by the attention (ATTN) key rather than the return key.
Default action: ignore the condition.
DEFINE COUNTER

Define a named counter.

Description

These counter commands create a new named counter in a named counter pool in the coupling facility.

DEFINE COUNTER creates counters that are handled as fullword signed binary values, and **DEFINE DCOUNTER** creates counters that are handled as doubleword unsigned binary values.

Note: Although the CICS API allows you to operate with either fullword (signed) or doubleword (unsigned) binary values, the named counter server stores all values as doubleword unsigned values. This can give rise to overflow conditions if, for example, you define a counter with the DCOUNTER command and try to access it using the COUNTER command. You should always access a named counter using commands from the same command set that you used to define the counter.

For information about specifying fullword and doubleword variables on these named counter commands, see “Argument values” on page 2.

Options

- **COUNTER**(name)

 specifies the 16-character name of the named counter to be created. All value fields for this counter are handled as fullword signed binary values. Valid characters for names are A through Z, 0 through 9, $ @ # and _ (underscore). If **name** is a variable that contains a name that is less than 16 characters, the name must be padded with trailing blanks.

- **MAXIMUM**(data-value)

 specifies the maximum number for the named counter, using a fullword signed binary value for COUNTER and a doubleword unsigned value for DCOUNTER. This is the maximum number that can be assigned on a GET command, after which the counter must be reset by a REWIND command.

 If you omit the MAXIMUM parameter, the named counter is defined with a default maximum of high-values (X’7FFFFFFF’ for the signed fullword case, or a doubleword filled with X’FF’).

- **MINIMUM**(data-value)

 specifies the minimum number for the named counter, using a fullword signed binary value for COUNTER and a doubleword unsigned value for DCOUNTER. This is the value to which a named counter is reset as a result of a REWIND command.

 If you omit the MINIMUM parameter, the named counter is defined with a default minimum of low-values (a fullword or doubleword filled with X’00’).

- **POOL**(name)

 specifies an 8-character string to be used as a pool selection parameter to select the pool in which the named counter is to be created. The string can be a logical pool name, or the actual pool name.
DEFINE COUNTER

Valid characters for the pool selector string are A through Z, 0 through 9, $ @ # and _ (underscore). If name is a variable that contains a name that is less than 8 characters, the name must be padded with trailing blanks.

This parameter is optional. If you omit the name of the pool, a pool selector value of 8 blanks is assumed.

If there is no matching entry in the DFHNCOPT options table, CICS uses the name specified on the NCPLOPT system initialization parameter, which specifies the default named counter pool.

For information about generating a named counter options table using the DFHNC macro, see the CICS System Definition Guide.

VALUE(data-value)
specifies the initial number at which the new named counter is to start, using a fullword signed binary value for COUNTER and a doubleword unsigned value for DCOUNTER.

You can specify a number that is equal to, or greater than, the minimum value, up to the maximum value plus 1. If you specify an initial number that is equal to the maximum value plus 1, the counter is created with the counter-at-limit condition set and it cannot be used until it is rewound.

If you omit both the VALUE and MINIMUM parameters, the named counter is created with an initial value of zero.

If you omit VALUE but specify a MINIMUM, the translator issues an error—the VALUE parameter is required if you specify the MINIMUM parameter.

Conditions

INVREQ

RESP2 values:

202 Duplicate counter name. A named counter of this name already exists.

301 The server has reported an error code that is not understood by the named counter interface.
Generally, this is not possible unless the interface load module, DFHNCIF, is at a lower maintenance or release level than the server itself.

302 The server cannot create the new named counter because there is not enough space in the named counter pool.

303 An unexpected error, such as structure failure or loss of connectivity, has occurred on a macro used to access the coupling facility. Further information can be found in message DFHNC0441 in the CICS job log.

304 The pool selection parameter specified in the program cannot be resolved to a valid server name using the current options table.

305 The interface is unable to establish a connection to the server for the selected named counter pool. Further information can be found in an AXM system services message (AXMSCnnnn) in the CICS job log.

306 An abend occurred during server processing of a request. Further information can be found in a message in the CICS job log and the server job log.

308 The DFHNCOPT options table module, required for resolving a pool name, could not be loaded.

309 During processing of the options table, the named counter interface encountered an unknown entry format. Either the options table is not correctly generated, or the DFHNCIF interface load module is not at the same release level as the options table.

310 An options table entry matching the given pool name specified a user exit program, but the user exit program is not link-edited with the options table and cannot be loaded.

403 The POOL parameter contains invalid characters or embedded spaces.

404 The COUNTER parameter contains invalid characters or embedded spaces.

406 The VALUE parameter is invalid. Initial values cannot be less than the minimum value, and cannot be greater than the maximum value plus 1.

407 The MINIMUM or MAXIMUM parameter is invalid. Either the MAXIMUM parameter specifies a value that is less than the minimum value, or (for COUNTER only) one of the parameters specifies a negative value.

Default action: terminate the task abnormally.
DELAY

Delay the processing of a task.

Description

DELAY suspends the processing of the issuing task for a specified interval of time or until a specified time of day. It supersedes any previously initiated POST command for the task.

The default is INTERVAL(0), but for C the default is FOR HOURS(0) MINUTES(0) SECONDS(0).

Options

FOR

specifies the duration of the delay.

HOURS(data-value)

a fullword binary value in the range 0–99.

INTERVAL(hhmmss)

specifies, in packed decimal format, the interval of time that is to elapse from the time when the DELAY command is issued. The mm and ss are in the range 0–59. The time specified is added to the current clock time by CICS when the command is executed to calculate the expiration time.

When using the C language, you are recommended to use the FOR/UNTIL HOURS, MINUTES, and SECONDS options as C does not provide a packed decimal data type. You may use INTERVAL, but if the value specified is not an integer constant, the application is responsible for ensuring that the value passed to CICS is in packed decimal format.

REQID(name)

specifies a name (1–8 characters), which should be unique, to identify the DELAY request. Using this option to specify an application-defined name enables another transaction to cancel the DELAY request.

To enable other tasks to cancel unexpired DELAY requests, you must make the request identifier dynamically available. For example, storing it in a TS queue, whose name is known to other applications that may want to cancel the DELAY request, is one way you can pass a request identifier to other transactions.

MINUTES(data-value)

specifies a fullword binary value in the range 0–59, when HOURS or SECONDS are also specified, or 0–5999 when MINUTES is the only option specified.

TIME(hhmmss)

specifies, in packed decimal format, the time when the task should resume processing.

When using the C language, you are recommended to use the FOR/UNTIL HOURS, MINUTES, and SECONDS options as C does not provide a packed decimal data type. You may use TIME, but if the value specified is not an integer constant, the application is responsible for ensuring that the value passed to CICS is in packed decimal format. See the section about expiration times in the CICS Application Programming Guide.

Conditions: EXPIRED, INVREQ

Note for dynamic transaction routing

Using DELAY with REQID if later CANCELeD could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the CICS Application Programming Guide for more information about transaction affinities.
DELAY

UNTIL
specifies the time at the end of the delay and when the task should resume processing.

Conditions

EXPIRED
occurs if the time specified has already expired when the command is issued.
Default action: ignore the condition.

INVREQ
RESP2 values:
4 Hours are out of range.
5 Minutes are out of range.
6 Seconds are out of range.
also occurs (RESP2 not set) if the DELAY command is not valid for processing by CICS.
Default action: terminate the task abnormally.

Examples

The following example shows you how to suspend the processing of a task for five minutes:

EXEC CICS DELAY
 INTERVAL(500)
 REQID('GXLBZQMR')

EXEC CICS DELAY FOR MINUTES(5)

The following example shows you how, at 09:00, to suspend the processing of a task until 12:45:

EXEC CICS DELAY
 TIME(124500)
 REQID('UNIQCODE')

There are two ways to enter the time under FOR or UNTIL.

- A combination of at least two of HOURS(0–99), MINUTES(0–59) and SECONDS(0–59). HOURS(1) SECONDS(3) would mean one hour and three seconds (the minutes default to zero).

- Any one of HOURS(0–99), MINUTES(0–5999), or SECONDS(0–359999). HOURS(1) means one hour. MINUTES(62) means one hour and two minutes. SECONDS(3723) means one hour, two minutes, and three seconds.
DELETE

Delete a record from a file — VSAM KSDS, VSAM RRDS, and data tables only.

DELETE

DELETFILE(filename)

TOKEN(data-area)

RIDFLD(data-area)

KEYLENGTH(data-value)

GENERIC

NUMREC(data-area)

SYSID(systemname)

NOSUSPEND

RBA

RRN

Conditions: CHANGED DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, LOADING, LOCKED, NOTAUTH, NOTFND, NOTOPEN, RECORDBUSY, SYSIDERR

Description

DELETE deletes a record from a file on a KSDS, a path over a KSDS, a CICS or user-maintained data table, or an RRDS. You cannot delete from a VSAM ESDS or a BDAM file. All references to KSDS apply equally to CICS maintained data tables and, except where stated otherwise, to paths over a KSDS. The file may be on a local or a remote system. You identify, in the RIDFLD option, the specific record to be deleted.

You can delete a group of records in a similar way with a single invocation of this command, identifying the group by the GENERIC option (not available for RRDS).

You can also use this command to delete a single record that has previously been retrieved for update (by a READ UPDATE command). In this case, you must not specify the RIDFLD option.

When this command is used to delete records from a CICS-maintained data table, the update is made to both the source VSAM KSDS data set and the in-memory data table.

When this command is used to delete records from a user-maintained data table, the update is made only to the in-memory data table.

When this command is used to delete records from a coupling facility data table, the update is made only to the data table in the coupling facility.

Options

FILE(filename)

specifies the name of the file to be accessed.

If SYSID is specified, the data set to which this file refers is assumed to be on a remote system irrespective of whether the name is defined in the FCT. Otherwise, the FCT entry is used to find out whether the data set is on a local or a remote system.

GENERIC (VSAM KSDS only)

specifies that the search key is a generic key with a length specified in the KEYLENGTH option. The search for a record is satisfied when a record is found with a key that has the same starting characters (generic key) as those specified.

KEYLENGTH(data-value)

specifies the length (halfword binary) of the key that has been specified in the RIDFLD option, except when RBA or RRN is specified, in which case it is not valid. This option must be specified if GENERIC is specified, and it may be specified whenever a key is specified. However, if the length specified is different from the length defined for the data set and the operation is not generic, the INVREQ condition occurs.

The INVREQ condition also occurs if you specify GENERIC, and the KEYLENGTH is not less than that specified in the VSAM definition.

You should not specify a zero value of KEYLENGTH because the results of this are unpredictable.

NOSUSPEND (RLS only)

specifies that the request is not to wait if VSAM is holding an active lock against the record, including records locked as the result of a DEADLOCK.
NUMREC (data-area) (VSAM KSDS only)
specifies a halfword binary data area that CICS sets to the number of deleted records.

RBA
(VSAM KSDS base data sets only, not paths) specifies that the record identification field specified in the RIDFLD option contains a relative byte address. This option should be used only when deleting records using relative byte addresses instead of keys to identify the records.

You cannot use RBA for:
- User-maintained data tables
- Coupling facility data tables
- Any files opened in RLS access mode
- KSDS files that are capable of holding more than 4GB of data

RIDFLD (data-area)
specifies the record identification field. The contents can be a key, a relative byte address, or a relative record number. For a relative byte address or a relative record number, the format of this field must be fullword binary. For a relative byte address, the RIDFLD can be greater than or equal to zero. For a relative record number, the RIDFLD can be greater than or equal to 1.

The contents must be a key for user-maintained data tables or coupling facility data tables.

You must specify this option if you have also specified GENERIC.

RRN (VSAM RRDS only)
specifies that the record identification field specified in the RIDFLD option contains a relative record number. This option should be used only with files referencing relative record data sets.

SYSID(systemname)
specifies the name (1–4 characters) of the system the request is directed to.

If you specify SYSID, and omit both RBA and RRN, you must also specify KEYLENGTH; it cannot be found in the FCT.

TOKEN (data-area)
Specifies, as a fullword binary value, a unique identifier for this DELETE request. Use this to associate the delete request with a record returned on a previous READ UPDATE or BROWSE for UPDATE request. The value to use is the value returned in the TOKEN held by the earlier READ UPDATE or BROWSE for UPDATE request.

TOKEN can be function shipped. However, if a request specifying TOKEN is function shipped to a member of the CICS family of products that does not recognize this option, the request fails.

Conditions

Note: RESP2 values are not set for files that are on remote systems.

CHANGED

109 A DELETE command (without RIDFLD) is issued for a file that is a defined as a coupling facility data table using the contention update model and the record has been changed since the application program read it for update. To perform the DELETE successfully, repeat the read for update to get the latest version of the record, and try the DELETE again.

Default action: terminate the task abnormally.

DISABLED

RESP2 values:

50 A file is disabled. A file may be disabled because:
- It was initially defined as disabled and has not since been enabled.
- It has been disabled by a SET FILE or a CEMT SET FILE command.

This condition cannot occur when the DELETE follows any read with the UPDATE option.

Default action: terminate the task abnormally.

DUPKEY

RESP2 values:

140 A record is accessed by way of an alternate index with the NONUNIQUEKEY attribute, and another alternate index record with the same key follows.

Default action: terminate the task abnormally.

FILENOTFOUND

RESP2 values:

1 The file name referred to in the FILE option cannot be found in the file resource definition.

Default action: terminate the task abnormally.

ILLOGIC

RESP2 values:

110 A VSAM error occurs that does not fall within one of the other CICS response categories.

(See EIBRCODE in the EXEC interface block; refer to Appendix A, “EXEC interface block” on page 387 for details.)

Default action: terminate the task abnormally.

INVREQ

RESP2 values:
Delete operations are not allowed according to the file entry specification in the FCT.

A DELETE command is issued for a file referring to a VSAM ESDS.

A generic delete is issued for a file that is not a VSAM KSDS.

The KEYLENGTH and GENERIC options are specified, and the length specified in the KEYLENGTH option is greater than or equal to the length of a full key.

The KEYLENGTH option is specified (but the GENERIC option is not specified), and the specified length does not equal the length defined for the data set to which this file refers.

A DELETE command is issued for a file referring to a BDAM data set.

A DELETE command without the RIDFLD option is issued for a file for which no previous READ UPDATE command has been issued.

The KEYLENGTH and GENERIC options are specified, and the length specified in the KEYLENGTH option is less than zero.

The DELETE command does not conform to the format of DELETE for a user-maintained or coupling facility data table; for example if RBA was specified.

A DELETE instruction includes a token whose value cannot be matched against any token in use for an existing read for UPDATE request.

A DELETE command specifying the RBA keyword is issued against a KSDS file that is being accessed in RLS mode. RLS does not support relative byte address (RBA) access to KSDS files.

NOSUSPEND is specified for a non-RLS file.

An attempt to update a recoverable coupling facility data table has failed because the current unit of work has already updated 1024 recoverable coupling facility data tables. You cannot update more than 1024 recoverable coupling facility data tables within a unit of work.

Default action: terminate the task abnormally.

There is an I/O error during the file control operation. An I/O error is any unusual event that is not covered by a CICS condition.

For VSAM files, IOERR normally indicates a hardware error.

For a coupling facility data table, an IOERR indicates a bad response returned from a coupling facility access.

(Further information is available in the EXEC interface block; refer to Appendix A, “EXEC interface block” on page 387 for details.)

Default action: terminate the task abnormally.

The remote system indicates a failure that does not correspond to a known condition.

Default action: terminate the task abnormally.

A delete request is issued for a user-maintained data table that is currently being loaded. A user-maintained data table cannot be modified during loading.

LOADING is also returned for a coupling facility data table if the delete request is for a key that is not yet loaded. A coupling facility data table can be modified during loading, but only if the requested key is within the range of those records already loaded.

The LOADING response can also be returned for a coupling facility data table that has failed during loading. For more information about what happens if the load for a coupling facility data table fails, see the description of the XDTLC global user exit in the CICS Customization Guide.

If your application programs encounter the LOADING condition persistently or too frequently, check that this is not caused by conflicting file definitions that reference the same data set.

Default action: terminate the task abnormally.

An attempt is made to delete a record specifying the RIDFLD, but a retained lock exists against this key (see “Retained and active locks” on page 72).

If the request specifies the GENERIC keyword, all possible records are deleted, but the locked records remain. The number of records deleted is returned by NUMREC.

The LOCKED condition can also occur for a DELETE request to a recoverable CFDT that uses the locking model, if the record being read is locked by a retained lock. See the CICS Recovery and Restart Guide for information about investigating retained locks on records in a coupling facility data table.

Default action: abend the task with code AEX8.
DELETE

NOTAUTH
RESP2 values:

101 A resource security check has failed on FILE(filename).

Default action: terminate the task abnormally.

NOTFND
RESP2 values:

80 An attempt to delete a record based on the search argument provided is unsuccessful.

For user-maintained data and coupling facility data tables, this condition occurs if an attempt to delete a record is unsuccessful because there is no entry with the specified key in the data table. This can occur on an attempt to delete a record using a DELETE without RIDFLD, if the delete is associated with a READ UPDATE request for a record that this transaction has deleted (using DELETE with RIDFLD) after it was read for update.

This does not mean that there is no such record in the source data set (if the table was created from one); it may be that such a record is present but was either rejected during initial loading by the user exit XDTRD, or was subsequently deleted from the data table.

For coupling facility data tables, this condition can also occur when a DELETE command (without a RIDFLD) is issued to a coupling facility data table using the contention model, and the record has been deleted since it was read for update.

Default action: terminate the task abnormally.

NOTOPEN
RESP2 values:

60 NOTOPEN (RESP2 60) is returned for one of the following reasons:

- The requested file is CLOSED and UNENABLED. The CLOSED, UNENABLED state is reached after a CLOSE request has been received against an OPEN ENABLED file and the file is no longer in use. You can also make CLOSED, UNENABLED the initial state, by specifying STATUS(UNENABLED) and OPENTIME(FIRSTREF) on the FILE resource definition.
- The requested file is OPEN and in use by other transactions, but a CLOSE request against the file has been received.
- A DELETE command is issued against a data set that is quiesced, or is being quiesced, as a result of a SET DSNNAME QUIESCED or IMMQUIESCED command.

This condition does not occur if the request is made to either a CLOSED, ENABLED file or a CLOSED, DISABLED file. In the first case, the file is opened as part of executing the request. In the second case, the DISABLED condition occurs.

This condition also cannot occur when deleting a record just read for update.

Default action: terminate the task abnormally.

RECORDBUSY
RESP2 values:

107 The NOSUSPEND keyword is specified for the deletion of a record that is locked by a VSAM active lock (see “Retained and active locks”).

If the request specifies the GENERIC keyword, all possible records are deleted except for the locked records which remain. The number of records deleted is returned by NUMREC.

Default action: abend the task with code AEX9.

SYSIDERR
RESP2 values:

130 The SYSID option specifies a name that is neither the local system nor a remote system (made known to CICS by defining a CONNECTION). SYSIDERR also occurs when the link to the remote system is closed.

131 For a coupling facility data table, the connection to the coupling facility data table server has failed. This could be because the server itself has failed, or the server is available, but CICS has failed to connect to it.

132 The DELETE is issued against a coupling facility data table that no longer exists, probably because of a coupling facility failure, in which case the coupling facility data table server also fails. See the CICS System Definition Guide for information about restarting a coupling facility data table server and reloading a table.

Default action: terminate the task abnormally.

Description

Retained and active locks: RECORDBUSY refers to active locks and LOCKED refers to retained locks:

- DELETE requests for records that have retained locks are always rejected with a LOCKED response.
- DELETE requests for records that have active locks wait for the lock to be released, except when the NOSUSPEND keyword is specified, in which case CICS returns the RECORDBUSY response.
Examples

The following example shows you how to delete a group of records in a VSAM data set:

```
EXEC CICS DELETE
   FILE('MASTVSAM')
   RIDFLD(ACCTNO)
   KEYLENGTH(len)
   GENERIC
   NUMREC(NUMDEL)
```
DELETE COUNTER

Delete the named counter

```plaintext
DELETE COUNTER(name) ──POOL(name)─
```

Conditions: INVREQ

```
DELETE DCOUNTER(name) ──POOL(name)─
```

Conditions: INVREQ

Description

These commands delete the named counter from the specified pool. COUNTER operates on a fullword counter, and DCOUNTER operates on a doubleword counter.

Options

COUNTER(name)

specifies the name of the fullword counter to be deleted. The name can be up to 16 alphanumeric characters. If name is a variable that contains a name that is less than 16 characters, the name must be padded with trailing blanks.

DCOUNTER(name)

specifies the name of the doubleword counter to be deleted. The name can be up to 16 alphanumeric characters. If name is a variable that contains a name that is less than 16 characters, the name must be padded with trailing blanks.

POOL(poolname)

specifies an 8-character string to be used as a pool selection parameter to select the pool in which the named counter resides. The string can be a logical pool name, or the actual pool name.

Valid characters for the pool selector string are A through Z, 0 through 9, $ @ # and _ (underscore). If name is a variable that contains a name that is less than 8 characters, the name must be padded with trailing blanks.

This parameter is optional. If you omit the name of the pool, a pool selector value of 8 blanks is assumed.

If there is no matching entry in the DFHNCOPT options table, CICS uses the name specified on the NCPLDFT system initialization parameter, which specifies the default named counter pool.

For information about generating a named counter options table using the DFHNCO macro, see the CICS System Definition Guide.

Conditions

INVREQ

RESP2 values:

- **201** Named counter not found.
- **301** The server has reported an error code that is not understood by the named counter interface. Generally, this is not possible unless the interface load module, DFHNCIF, is at a lower maintenance or release level than the server itself.
- **303** An unexpected error, such as structure failure or loss of connectivity, has occurred on a macro used to access the coupling facility. Further information can be found in message DFHNC0441 in the CICS job log.
- **304** The pool selection parameter specified in the program cannot be resolved to a valid server name using the current options table.
- **305** The interface is unable to establish a connection to the server for the selected named counter pool. Further information can be found in an AXM services message (AXMSCnnnn) in the CICS job log.
- **306** An abend occurred during server processing of a request. Further information can be found in a message in the CICS job log and the server job log.
- **308** The DFHNCOPT options table module, required for resolving a pool name, could not be loaded.
- **309** During processing of the options table, the named counter interface encountered an unknown entry format. Either the options table is not correctly
generated, or the DFHNCIF interface load module is not at the same release level as the options table.

310 An options table entry matching the given pool name specified a user exit program, but the user exit program is not link-edited with the options table and cannot be loaded.

403 The pool selection parameter contains characters that are not allowed, or embedded spaces.

Default action: terminate the task abnormally.
DELETEQ TD

Delete all transient data.

\[\text{DELETEQ TD} \rightarrow \text{QUEUE}(\text{name}) \rightarrow \text{SYSID}(\text{systemname})\]

Conditions: DISABLED, INVREQ, ISCINVREQ, LOCKED, NOTAUTH, QIDERR, SYSIDERR

Description
DELETEQ TD deletes all the transient data associated with a particular intrapartition destination (queue). All storage associated with the destination is released (deallocated). Note that you cannot use this command to delete an extrapartition transient data queue. An attempt to do so results in an INVREQ condition.

Options
\text{QUEUE}(\text{name})
specifies the symbolic name (1–4 alphanumeric characters) of the queue to be deleted. The named queue must be defined to CICS.

If SYSID is specified, the queue is assumed to be on a remote system, irrespective of how it is defined. Otherwise the resource definition is used to find out whether the queue is on a local or a remote system.

\text{SYSID}(\text{systemname})
(remote systems only) specifies the name (1–4 characters) of the system the request is directed.

Conditions
DISABLED
occurs when the queue has been disabled.
Default action: terminate the task abnormally.

INVREQ
occurs if DELETEQ names an extrapartition queue.
Default action: terminate the task abnormally.

ISCINVREQ
occurs when the remote system indicates a failure that does not correspond to a known condition.
Default action: terminate the task abnormally.

LOCKED
occurs when the request cannot be performed because use of the queue has been restricted owing to a unit of work failing in-doubt. This can happen on any request for a logically-recoverable queue defined with WAIT(YES) and WAITACTION(REJECT) in the TDQUEUE resource definition.
Specify WAIT(YES) and WAITACTION(QUEUE) in the TDQUEUE resource definition if you want the transaction to wait.
Default action: terminate the task abnormally.

NOTAUTH
occurs when a resource security check has failed on QUEUE(name).
Default action: terminate the task abnormally.

QIDERR
occurs if the symbolic destination to be used with DELETEQ TD cannot be found.
Default action: terminate the task abnormally.

SYSIDERR
occurs when the SYSID option specifies a name that is neither the local system nor a remote system (made known to CICS by defining a CONNECTION).
SYSIDERR also occurs when the link to the remote system is closed.
Default action: terminate the task abnormally.
DELETEQ TS

Delete a temporary storage queue.

DELETEQ TS

```
<table>
<thead>
<tr>
<th>DELETEQ TS</th>
<th>QUEUE(name)</th>
<th>QNAME(name)</th>
<th>SYSID(systemname)</th>
</tr>
</thead>
</table>
```

Conditions: INVREQ, ISCINVREQ, LOCKED, NOTAUTH, QIDERR, SYSIDERR

Note for dynamic transaction routing

Using this command could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the *CICS Application Programming Guide* for more information about transaction affinities.

Description

DELETEQ TS deletes all the temporary data associated with a temporary storage queue. All storage associated with the queue is freed.

You should delete temporary data as soon as possible to avoid using excessive amounts of storage.

When a recoverable temporary storage queue is deleted, you must issue a syncpoint before issuing a subsequent WRITEQ TS for the same queue.

Options

QUEUE(name)

specifies the symbolic name (1–8 characters) of the queue to be deleted. The name may not consist solely of binary zeros and must be unique within the CICS system.

QNAME(name)

an alternative to QUEUE, QNAME specifies the symbolic name (1–16 characters) of the queue to be deleted. The name may not consist solely of binary zeros and must be unique within the CICS system.

SYSID(systemname)

(remote and shared queues only) specifies the system name (1–4 characters) identifying the remote system or shared queue pool to which the request is directed.

Conditions

INVREQ

occurs in either of the following situations:

- the queue was created by CICS internal code.
- the queue name specified consists solely of binary zeroes.

Default action: terminate the task abnormally.

ISCINVREQ

occurs when the remote system indicates a failure that does not correspond to a known condition.

Default action: terminate the task abnormally.

LOCKED

occurs when the request cannot be performed because use of the queue has been restricted owing to a unit of work failing in-doubt.

Default action: terminate the task abnormally.

NOTAUTH

occurs when a resource security check has failed on QUEUE(name).

Default action: terminate the task abnormally.

QIDERR

occurs when the specified queue cannot be found in either main or auxiliary storage.

Default action: terminate the task abnormally.

SYSIDERR

occurs in any of the following situations:

- When the SYSID option specifies a name that is neither the local system nor a remote system (made known to CICS by defining a CONNECTION)
- When the link to the remote system is closed
- When the CICS region in which the temporary storage command is executed fails to connect to the TS server managing the TS pool that supports the referenced temporary storage queue. (For example, this can happen if the CICS region is not authorized to access the temporary storage server).

SYSIDERR can also occur if the temporary storage server has not been started, or because the server has failed (or been stopped) while CICS continues executing.

Default action: terminate the task abnormally.
DEQ

Schedule use of a resource by a task (dequeue).

```
DEQ RESOURCE(data-area) LENGTH(data-value) UOW
MAXLIFETIME(cvda) TASK
```

Conditions: INVREQ, LENGERR

Note for dynamic transaction routing

Using this command could create inter-transaction affinities that adversely affect the use of dynamic transaction routing, unless the name specified in RESOURCE matches the name specified in an installed ENQMODEL resource definition, that has sysplex-wide scope. See the CICS Application Programming Guide for more information about transaction affinities.

Description

DEQ causes a resource currently enqueued on by the task to be released for use by other tasks.

If a task enqueues on, but does not dequeue from, a resource, CICS automatically releases the resource during syncpoint processing or when the task is terminated. A resource in the context of this command is any string of 1–255 bytes, established by in-house standards, to protect against conflicting actions between tasks, or to cause single-threading within a program.

When issuing the DEQ command, the resource to be dequeued from must be identified by the method used when enqueuing on the resource. If no enqueue has been issued for the resource, the dequeue is ignored.

If more than one ENQ command is issued for a resource by a task, that resource remains owned by the task until the task issues a matching number of DEQ commands.

When an EXEC CICS DEQ (or ENQ) command is issued for a resource whose name matches that of an installed ENQMODEL resource definition, CICS checks the value of the ENQSCOPE attribute to determine whether the scope is local or sysplex-wide. If the ENQSCOPE attribute is left blank (the default value), CICS treats the DEQ as local to the issuing CICS region. If no ENQMODEL matches the resource name, the scope of the DEQ command is local.

See the CICS Resource Definition Guide for more information about the ENQMODEL resource definition.

Options

LENGTH(data-value) specifies that the resource to be dequeued from has a length given by the data value. The data value is a halfword binary value in the range 1 through 255. If the value you specify is outside this range, a LENGERR condition occurs. If the LENGTH option is specified in an ENQ command, it must also be specified in the DEQ command for that resource, and the values of these options must be the same.

MAXLIFETIME(cvda) specifies the duration of the ENQ being released. CVDA values are:

- **UOW**
 - The ENQ was acquired with a duration of a unit of work. This is the default value.
 - **Note:** For compatibility with previous releases of CICS, a CVDA value of LUW is also supported.

- **TASK**
 - The ENQ was acquired with a duration of a task.

RESOURCE(data-area) specifies either an area whose address represents the resource to be dequeued from, or a variable that contains the resource (an employee name, for example). In the latter case, you must use the LENGTH option.

Conditions

INVREQ

RESP2 values:

- 2 The MAXLIFETIME option is set with an incorrect CVDA.

 Default action: terminate the task abnormally.

LENGERR

RESP2 values:
The value you specified for the LENGTH option is outside the range 1 through 255.

Default action: terminate the task abnormally.

Examples

The following examples show how to dequeue from a resource:

```
EXEC CICS DEQ
   RESOURCE(RESNAME)

EXEC CICS DEQ
   RESOURCE(SOCSECNO)
   LENGTH(8)
```
DOCUMENT CREATE

Create a document.

Description

`DOCUMENT CREATE` signals the start of the document creation process. The document being created can be an empty document, or it can be based on an existing document, a template, or data contained in an application buffer.

Options

- **BINARY(data-area)**
 specifies a buffer of data which is to be used as the contents of the new document being created. The data is copied unchanged to the document content and no attempt is made to parse the data for symbol substitution. The purpose of the BINARY option is to allow the application to insert blocks of data that must not undergo conversion to a client code page when the data is sent.

- **DOCSIZE(data-area)**
 specifies a binary fullword area that will be updated with the current size of the document in bytes. This is the maximum size of the buffer needed to contain a copy of the document when a RETRIEVE command is issued.

- **DOCTOKEN(data-area)**
 specifies a data area to contain the symbolic name of the document. The area must be 16 bytes in length and will be set to a CICS-generated name by which the document can be referred to in later commands.

- **FROM(data-area)**
 specifies that data supplied by the application is to be used to create the contents of the new document. The data content could be a template or a document which was created and retrieved. If the data is a template, symbol substitution will take place where the symbols exist in the symbol table. If the data is a previously retrieved document, the conversion and bookmark tags which were inserted during retrieval will be removed from the content and stored in the internal format required by the API commands. Note that symbol substitution will not be attempted on any unresolved symbols contained in a retrieved document.

- **FROMDOC(data-area)**
 specifies the symbolic name (see the `DOCTOKEN` option) of a document whose contents are to be copied to the new document being created. All bookmark and conversion tags are copied to the new document. The symbol table will not be copied.

- **HOSTCODEPAGE(name)**
 specifies the name of the host codepage that the data being added is encoded in. This option applies to the TEXT, SYMBOL and TEMPLATE options only. The name must be eight characters long; if it is shorter than eight characters it must be padded on the right with blanks.

- **LENGTH(data-value)**
 specifies the length, as a fullword binary value, of the application supplied buffer.

- **LISTLENGTH(data-value)**
 specifies the length, as a fullword binary value, of the symbol list.

- **SYMBOLLIST(data-area)**
 specifies a buffer which contains a symbol list. A symbol list is a character string consisting of one or more symbol definitions separated by ampersands. Each symbol definition consists of a name, an equals sign, and a value. The name is case-sensitive. It can contain only uppercase and lowercase letters, numbers, and underscores ("_"). Unlike the symbols in the template, the names in the symbol list have neither an ampersand at the beginning, nor a semicolon at the end. For example, the symbol &mytitle; in the template corresponds to the name mytitle in the symbol list. Symbols in the symbol list are separated by the & character. For example:

 `applid=IYCQ&jobname=test`
The following restrictions apply to the characters allowed in the value in the symbol list:

- A percent sign may be followed by two hexadecimal digits. When the value is put into the symbol table, the percent sign and the two hexadecimal digits following it are interpreted as the EBCDIC equivalent of the single ASCII character denoted by the two digits. If you want a percent sign in the value in the symbol table, you may put %25 in the symbol list. If the characters following the percent sign are not two valid hexadecimal digits, the percent sign and the following characters are put into the symbol table as they appear in the symbol list.
- An ampersand is not allowed. If you want an ampersand in the value in the symbol table, you must put %26 in the symbol list.
- When the value is put into the symbol table, a plus sign is interpreted as a space. If you want a plus sign in the value in the symbol table, you must put %2B in the symbol list.
- If you want a space in the value in the symbol table, the value in your symbol list may contain a space, a plus sign, or %20.

TEMPLATE(name)

specifies the 48-byte name of a template. The template must be defined to CICS using RDO. If the name is shorter than 48 bytes, it must be padded on the right with blanks.

TEXT(data-area)

specifies a buffer of data which is to be used as the contents of the new document being created. The data is copied unchanged to the document content and no attempt is made to parse the data for symbol substitution. The data will be marked as requiring conversion to the client code page when the document is sent.

Conditions

INVREQ

RESP2 values are:

1. The retrieved document specified on the FROM option is not in a valid RETRIEVE format.

NOTFND

RESP2 values:

2. The document specified on the FROMDOC option could not be found or was named incorrectly.
3. The template specified on the TEMPLATE option could not be found or was named incorrectly.
7. The host codepage specified on the HOSTCODEPAGE option could not be found or was named incorrectly.

SYMBOLERR

a symbol specified in the symbol list does not conform to the naming rules for symbols. RESP2 contains the offset of the symbol in the list.

TEMPLATERR

an invalid #set, #include or #echo command has been encountered while processing the supplied template data. RESP2 contains the offset of the invalid command.
DOCUMENT INSERT

Insert document objects.

Description

DOCUMENT INSERT allows the application to insert document objects at insertion points within the document. The insertion points (bookmarks) define relative positions within the document. Bookmarks must be defined before being referenced. Data is always inserted after the position identified by the bookmark.

Options

AT(name)

specifies the 16-byte symbolic name of a bookmark which identifies the position of the insertion point in the document. Data is inserted after the bookmark, and any data following the bookmark is shifted down. The application can use a combination of the AT and TO options to perform an overlay operation. If the AT operand is not specified, the data is inserted at the end of the document. A pre-defined bookmark of TOP is provided to allow the application to insert data at the beginning of the document.

BINARY(data-area)

specifies a buffer of data to be inserted into the document. The data is copied unchanged to the insertion point in the document, and no attempt is made to parse the data for symbol substitution. The BINARY option allows the application to insert blocks of data that must not undergo conversion to a client code page when the data is sent.

BOOKMARK(name)

specifies a bookmark to be inserted into the document. A bookmark is a symbolic name which identifies an insertion point in the document. The name can be up to 16 characters in length, and must not contain any imbedded spaces.

DOCSIZE(data-value)

specifies a binary fullword area to be updated with the current size of the document in bytes. This is the maximum size of the buffer needed to contain a copy of the document when a RETRIEVE command is issued.

DOCTOKEN(data-area)

specifies the 16-byte symbolic name of the document into which data is to be inserted.

FROM(data-area)

specifies that a buffer of data supplied by the application is to be inserted into the document. The data content can be a template or a document that was previously created and retrieved. If the data is a template, symbol substitution takes place where the symbols exist in the symbol table. If the data is a previously retrieved document, the conversion and bookmark tags which were inserted during the retrieval will be removed from the content and stored in the internal form required by the API commands. Note that symbol substitution will not be attempted on any unresolved symbols contained in a retrieved document.

FROMDOC(data-area)

specifies the symbolic name of a document (see the DOCTOKEN option) whose contents are copied to the insertion point of the target document. All bookmarks and conversion tags are copied to the target document. The symbol table is not copied.

HOSTCODEPAGE(name)

specifies the symbolic name (see the DOCTOKEN option) of the host codepage that the data being added is encoded in. This option applies to the TEXT, SYMBOL and TEMPLATE options only. The name must be eight characters long; if it is shorter than eight characters, it must be padded on the right with blanks.
LENGTH(data-value)
 specifies the length, as a fullword binary value, of the
 buffer containing the TEXT, BINARY or FROM data.

SYMBOL(name)
 specifies the 32-byte name of a symbol in the symbol
 table. The data associated with the symbol in the symbol
 table is inserted, but not the symbol itself.

TEMPLATE(name)
 specifies the 48-byte name of a template. The template
 must be defined to CICS using RDO. If the name is less
 than 48 bytes, it must be padded on the right with
 blanks.

TEXT(data-area)
 specifies a buffer of data to be inserted into the
 document. The data is copied unchanged to the insertion
 point in the document, and no attempt is made to parse
 the data for symbol substitution. When the document is
 sent, it is marked as requiring conversion to the client
 code page.

TO(name)
 specifies the symbolic name of a bookmark identifying
 the end position of an overlay operation. Data between
 the bookmarks identified by the AT and TO operands is
 deleted, and new data is inserted in its place. It is
 possible to delete data between two bookmarks by
 specifying a null string on the TEXT or BINARY option
 with a LENGTH of zero.

Conditions

DUPREC
 the bookmark has already been defined.

INVREQ
 RESP2 values are:
 0 The bookmark specified on the TO option
 appears before the bookmark specified on
 the AT bookmark.
 1 The retrieved document specified on the
 FROM option is not in a valid RETRIEVE
 format.
 2 The bookmark name on the BOOKMARK
 option is invalid.

NOTFND
 one of the following documents or templates could not
 be found, or its name was incorrect.
 RESP2 values:
 1 The document specified on the DOCUMENT
 option.
 2 The document specified on the FROMDOC option.
 3 The template specified on the TEMPLATE option.
 4 The document specified on the SYMBOL option.

 5 The document specified on the AT option.
 6 The document specified on the TO option.
 7 The document specified on the HOSTCODEPAGE
 option.

TEMPLATERR
 an invalid #set, #include or #echo command has been
 encountered while processing the supplied template
 data. RESP2 contains either a zero (if the maximum of
 32 levels of embedded templates is exceeded), or the
 offset of the invalid command.
DOCUMENT RETRIEVE

Copy a document into the application’s own buffer.

Description

DOCUMENT RETRIEVE allows the application to obtain a copy of the document in its own buffer, which it can then manipulate directly. The document is managed by CICS, and the application does not have direct access to the buffer containing the contents of the document. The document exists only for the duration of the current transaction, so the application must retrieve the document and store it if the document is to exist over transaction boundaries. The retrieved document can be used as a basis for a new document by using the FROM option of the DOCUMENT CREATE command.

When the document is retrieved, CICS inserts tags into the document contents to identify the bookmarks and to delimit the blocks that do not require codepage conversion. To request a copy without tags, specify DATAONLY. The extracted document can also be converted into a single client codepage by using the CLNTCODEPAGE option.

Options

CLNTCODEPAGE(name)

specifies the name of the client codepage to which the data should be converted. The name can be up to 40 characters in length; if it is shorter than 40 characters, it must be padded on the right with blanks.

DATAONLY

specifies that the data should be retrieved without any imbedded tags.

DOCTOKEN(data-area)

specifies the 16-byte symbolic name of the document to be retrieved.

INTO(data-area)

specifies the buffer that is to contain the copy of the document content.

LENGTH(data-value)

specifies the length, as a fullword binary value, of the amount of data being returned to the application.

MAXLENGTH(data-value)

specifies the length, as a fullword binary value, of the maximum amount of data the buffer can receive.

Conditions

LENGERR

RESP2 values:

1 MAXLENGTH is less than or equal to zero. The document is truncated.

2 The length of the receiving buffer is zero, or is too short to contain the document contents. The document is truncated.

NOTFND

RESP2 values:

1 The document has not been created, or the name is incorrectly specified.

7 The specified client codepage can not be found.
DOCUMENT SET

Add symbols and values to symbol table.

Description

DOCUMENT SET allows the application to add symbols and their associated values to the symbol table. If the symbol being added already exists in the table, it is replaced by the new definition.

Options

- **DOCTOKEN**(data-area)

 specifies the 16-byte symbolic name of the document that owns the symbol table.

- **LENGTH**(data-value)

 specifies the length, as a fullword binary value, of the buffer containing the data value associated with the symbol or the length of the buffer containing the symbol list when the SYMBOLLIST option is used.

- **SYMBOL**(name)

 specifies the name of the symbol that is to be added to the table. The name can be 1 to 32 characters in length with no embedded spaces.

- **SYMBOLLIST**(data-area)

 specifies a buffer which contains a symbol list. A symbol list is a character string consisting of one or more symbol definitions separated by ampersands. Each symbol definition consists of a name, an equals sign, and a value.

 The name is case-sensitive. It can contain only uppercase and lowercase letters, numbers, and underscores ("_"). Unlike the symbols in the template, the names in the symbol list have neither an ampersand at the beginning, nor a semicolon at the end (for example, the symbol :mytitle; in the template corresponds to the name mytitle in the symbol list). Symbols in the symbol list are separated by the & character. For example:

 applid=IYCQ&jobname=test

 The following restrictions apply to the characters allowed in the value in the symbol list:

 - A percent sign may be followed by two hexadecimal digits. When the value is put into the symbol table, the percent sign and the two hexadecimal digits following it are interpreted as the EBCDIC equivalent of the single ASCII character denoted by the two digits. If you want a percent sign in the value in the symbol table, you may put %25 in the symbol list. If the characters following the percent sign are not two valid hexadecimal digits, the percent sign and the following characters are put into the symbol table as they appear in the symbol list.

 - An ampersand is not allowed. If you want an ampersand in the value in the symbol table, you must put %26 in the value in the symbol list.

 - When the value is put into the symbol table, a plus sign is interpreted as a space. If you want a plus sign in the value in the symbol table, you must put %2B in the value in the symbol list.

 - If you want a space in the value in the symbol table, the value in your symbol list may contain a space, a plus sign, or %20.

- **VALUE**(data-area)

 specifies an area containing the value to be associated with the SYMBOL.

Conditions

- **NOTFND**

 RESP2 values:

 1 The document has not been created or the name is incorrectly specified.

- **SYMBOLERR**

 a symbol name is invalid. RESP2 values:

 0 SYMBOLLIST was not used.

 offset RESP2 contains the offset of the invalid symbol in the list.
DUMP TRANSACTION

Request a transaction dump.

Description

DUMP TRANSACTION dumps all, a series, or any single main storage area related to a task, any or all of the CICS tables (DCT, FCT, PCT, PPT, SIT, or TCT), or all of these together.

Note that if you issue a DUMP TRANSACTION for a DUMPCODE that is defined in the transaction dump table with SYSDDUMP, you also get a system dump.

If there is no entry in the system dump table for the specified DUMPCODE, a temporary entry is made. This entry is lost on the next CICS start. The system dump table is described in the CICS Problem Determination Guide.

Options

COMPLETE

- dumps all main storage areas related to a task, all the CICS tables, and the DL/I control blocks.

DCT

- dumps the destination control table.

DUMPCODE(name)

- specifies a name (1–4 characters) that identifies the dump. If the name contains any leading or imbedded blanks, the dump is produced but INVREQ is raised. No entry is added to the system dump table.

If you omit all the options except DUMPCODE, you get the same dump as if you specified TASK, but without the DL/I control blocks.

FCT

- dumps the file control table.

FLENGTH(data-value)

- specifies the length (fullword binary value) of the storage area (specified in the FROM option) that is to be dumped. The maximum length that you can specify is 16777215 bytes.

FLENGTH and LENGTH are mutually exclusive.

FROM(data-area)

- dumps the specified data area, which must be a valid area; that is, storage allocated by the operating system within the CICS region. In addition, the following areas are dumped:
 - Task control area (TCA) and, if applicable, the transaction work area (TWA).
 - Common system area (CSA), including the user’s portion of the CSA (CWA).
 - If TRAN is specified for the TRTRANTY SIT parameter, only the trace entries associated with the current task are formatted. If TRTRANTY=ALL is specified, the entire internal trace table is formatted. This applies only when the CICS trace facility is active.
 - Either the terminal control table terminal entry (TCTTE) or the destination control table entry associated with the requesting task.

Whenever the TCTTE is dumped, the terminal control table user area (if any) and the message control blocks (if any) associated with the TCTTE are dumped. The latter are used by basic mapping support.

LENGTH(data-value)

- specifies the length (halfword binary) of the data area specified in the FROM option. For a description of a safe upper limit, see “LENGTH options” on page 5.
LENGTH and FLENGTH are mutually exclusive.

LENGTHLIST(data-area)
specifies a list of 32-bit binary values showing the lengths of the storage areas to be dumped. This corresponds to the list of segments specified in the SEGMENTLIST option. You must use both the SEGMENTLIST and NUMSEGMENTS options when you use the LENGTHLIST option.

NUMSEGMENTS(data-area)
specifies the number (fullword binary) of areas to be dumped. You must use both the SEGMENTLIST and LENGTHLIST options when you use the NUMSEGMENTS option.

PCT
formats a summary of each installed transaction definition.

PPT
dumps the processing program table.

PROGRAM
specifies that program storage areas associated with this task are to be dumped, as follows:

- Task control area (TCA) and, if applicable, the transaction work area (TWA)
- Common system area (CSA), including the user’s portion of the CSA (CWA)
- Trace entries relating to the task written to the internal trace table (only when the CICS trace facility is active)
- All program storage areas containing user-written application programs active on behalf of the requesting task
- Register save areas (RSAs) indicated by the RSA chain off the TCA
- Either the terminal control table terminal entry (TCTTE) or the destination control table entry associated with the requesting task

Whenever the TCTTE is dumped, the terminal control table user area (if any) and the message control blocks (if any) associated with the TCTTE are dumped.

TABLES
dumps the DCT, FCT, PCT, PPT, SIT, and the TCT.

TASK
specifies that storage areas associated with this task are to be dumped, as follows:

- A summary of the transaction environment associated with this task
- Common system area (CSA), including the user’s portion of the CSA (CWA)
- Trace entries relating to the task written to the internal trace table (only when the CICS trace facility is active)
- All program storage areas containing user-written application programs active on behalf of the requesting task
- All transaction storage areas
- Either the terminal control table terminal entry (TCTTE) or the destination control table entry associated with the requesting task
- Register save areas (RSAs) indicated by the RSA chain off the TCA
- All terminal input/output areas (TIOAs) chained off the terminal control table terminal entry (TCTTE) for the terminal associated with the requesting task
- DL/I control blocks

Whenever the TCTTE is dumped, the terminal control table user area (if any) and the message control blocks (if any) associated with the TCTTE are dumped.

TCT
dumps the terminal control table.

TERMINAL
specifies that storage areas associated with the terminal are to be dumped, as follows:

- Task control area (TCA) and, if applicable, the transaction work area (TWA)
DUMP TRANSACTION

- Common system area (CSA), including the user's portion of the CSA (CWA)
- Trace entries relating to the task written to the internal trace table (only when the CICS trace facility is active)
- All terminal input/output areas (TIOAs) chained off the terminal control table terminal entry (TCTTE) for the terminal associated with the requesting task as long as the request is not a write, or storage freezing is on for the task or the terminal
- Either the terminal control table terminal entry (TCTTE) or the destination control table entry associated with the requesting task.

Whenever the TCTTE is dumped, the terminal control table user area (if any) and the message control blocks (if any) associated with the TCTTE are dumped. The latter are used by basic mapping support.

TRT

dumps the trace entries relating to the task written to the internal trace table.

Conditions

INVREQ

RESP2 values:

13 An incorrect DUMPCODE is specified. DUMPCODE contains unprintable characters, or leading or imbedded blanks.

The dump is produced but no entry is added to the system dump table.

Default action: terminate the task abnormally.

IOERR

RESP2 values:

9 The SDUMP process is not authorized.

10 An error occurred during system dumping.

13 The CICS routine issuing the SDUMP is unable to establish a recovery routine (FESTAE).

Default action: terminate the task abnormally.

NOSPACE

RESP2 values:

4 The transaction dump is incomplete due to lack of space.

Default action: terminate the task abnormally.

NOSTG

RESP2 values:

5 CICS has run out of working storage.

Default action: terminate the task abnormally.

NOTOPEN

RESP2 values:

6 The current CICS dump data set is not open.

Default action: terminate the task abnormally.

OPENERR

RESP2 values:

7 There is an error on opening, closing, or writing to the current CICS dump routine.

Default action: terminate the task abnormally.

SUPPRESSED

RESP2 values:

1 The transaction dump is suppressed by MAXIMUM in table.

2 The transaction dump is suppressed by NOTRANDUMP in table.

3 The transaction dump is suppressed by a user exit program.

Default action: terminate the task abnormally.

Examples

The following example shows how to request a dump of all the task-related storage areas, the terminal control table, and a specified data area:

```
EXEC CICS DUMP TRANSACTION
    DUMPCODE('name')
    FROM(data-area)
    LENGTH(data-value)
```

This second example (written in PL/I) shows you a case in which five task-related storage areas are dumped:

```
DCL storage_address(5) POINTER,
    storage_length(5) FIXED BIN(31),
    nsegs FIXED BIN(31);
storage_address(1) = ADDR(areal);
storage_length(1) = CSTG(areal);
;
 nsegs = 5;
EXEC CICS DUMP TRANSACTION
    DUMPCODE('name')
    SEGMENTLIST(storage_address)
    LENGTHLIST(storage_length)
    NUMSEGMENTS(nsegs);
```
Description

ENDBR ends a browse on a file or data table on a local or a remote CICS region.

The UPDATE option is available within browse so we recommend that you use this because otherwise you would need to issue an ENDBR command before using READ UPDATE to avoid self deadlock abends. We recommend issuing an ENDBR before syncpoint for similar reasons.

If STARTBR was not successful, you need not issue ENDBR.

Conditions

Note: RESP2 values are not set for files that are on remote systems.

FILENOTFOUND

RESP2 values:

1 The name referred to in the FILE option cannot be found in the FCT.

Default action: terminate the task abnormally.

ILLOGIC (VSAM)

RESP2 values:

110 A VSAM error occurs that does not fall within one of the other CICS response categories.

(See EIBRCODE in the EXEC interface block; refer to Appendix A, “EXEC interface block” on page 387 for details.)

Default action: terminate the task abnormally.

INVREQ

RESP2 values:

35 The REQID, if any, does not match that of any successful STARTBR command.

Default action: terminate the task abnormally.

IOERR

RESP2 values:

120 There is an I/O error during the file control operation. An I/O error is any unusual event that is not covered by a CICS condition.

For VSAM files, IOERR normally indicates a hardware error.

(Further information is available in the EXEC interface block; see Appendix A, “EXEC interface block” on page 387 for details.)

Default action: terminate the task abnormally.

ISCINVREQ

RESP2 values:

70 The remote system indicates a failure that does not correspond to a known condition.

Default action: terminate the task abnormally.

NOTAUTH

RESP2 values:

101 A resource security check has failed on FILE(filename).

Default action: terminate the task abnormally.
SYSIDERR

RESP2 values:

130 The SYSID option specifies a name that is neither the local system nor a remote system (made known to CICS by defining a CONNECTION). SYSIDERR also occurs when the link to the remote system is closed.

Default action: terminate the task abnormally.
ENQ

Schedule use of a resource by a task (enqueue).

\[
\text{ENQ} \rightarrow \text{RESOURCE(data-area)} \rightarrow \text{LENGTH(data-value)} \rightarrow \text{UOW} \rightarrow \text{MAXLIFETIME(cvda)} \rightarrow \text{NOSUSPEND} \rightarrow \text{TASK}
\]

Conditions: ENQBUSY, INVREQ, LENGERR

Note for dynamic transaction routing

Using this command could create inter-transaction affinities that adversely affect the use of dynamic transaction routing, unless the name specified in RESOURCE matches a name specified in an installed ENQMODEL resource definition, that has sysplex-wide scope. See the CICS Application Programming Guide for more information about transaction affinities.

Description

ENQ causes further execution of the task issuing the ENQ command to be synchronized with the availability of the specified resource; control is returned to the task when the resource is available.

A resource in the context of this command is any string of 1–255 bytes, established by in-house standards, to protect against conflicting actions between tasks, or to cause single threading within a program.

If a task enqueues on a resource but does not dequeue from it, CICS automatically releases the resource during syncpoint processing (including DL/I, PCB, and TERM calls), or when the task is terminated. Option UOW forces the dequeue at the end of a unit of work (UOW). Option TASK forces the dequeue at the end of a task. If there are several units of work in a task, the enqueue carries over the UOWs.

If more than one ENQ command is issued for the same resource by a given task, the resource remains owned by that task until the task issues a matching number of DEQ commands.

The resource to be enqueued on must be identified by one of the following methods:

- Specifying a data area that is the resource. It is the location (address) of the data area in storage that matters, not its contents.
- Specifying a data area that contains a unique argument (for example, an employee name) that represents the resource. It is the contents of the data value that matters, not its location. LENGTH is required; the presence of the LENGTH option tells CICS to enqueue on the contents of the data value.
- When an EXEC CICS ENQ (or DEQ) command is issued for a resource whose name matches that of an installed ENQMODEL resource definition, CICS checks the value of the ENQSCOPE attribute to determine whether the scope is local or sysplex-wide. If the ENQSCOPE attribute is left blank (the default value), CICS treats the ENQ as local to the issuing CICS region. If no ENQMODEL matches the resource name, the scope of the ENQ command is local. See the CICS Resource Definition Guide for more information about the ENQMODEL resource definition.

Resource unavailability: If a resource is not available when ENQ is issued, the application program is suspended until it becomes available. However, if the NOSUSPEND option has been specified and the resource is unavailable, the ENQBUSY condition is raised, as it is also raised if you have an active HANDLE condition. This allows the application program to handle the case of resource unavailability (by HANDLE CONDITION ENQBUSY) without waiting for the resource to become available.

Options

LENGTH(data-value) specifies as a halfword binary value the length of the resource to be enqueued on. The value must be in the range 1 through 255; otherwise, the LENGERR condition occurs. If the LENGTH option is specified in an ENQ command, it must also be specified in the DEQ command for that resource, and the values of these options must be the same. You must specify LENGTH when using the method that specifies a data value containing a unique argument, but not for the method that specifies a data area as the resource. It is the presence or absence of LENGTH that tells CICS which method you are using.

MAXLIFETIME(cvda) specifies the duration of the ENQ to be automatically released by CICS. CVDA values are:
The duration of the ENQ is a unit of work. Examples are a syncpoint rollback or syncpoint, if the application does not issue a DEQ before the unit of work ends. This is the default value.

Note: For compatibility with previous releases of CICS/ESA, a CVDA value of LUW is also supported.

The duration of the ENQ is a task. The enqueue carries over the units of work within the task. Use MAXLIFETIME(TASK) with great care because other tasks issuing ENQ commands on the same resource could be suspended until the end of this task.

There are two ways to code this option.

- You can assign a cvda value with the translator routine DFHVALUE. This allows you to change a cvda value in the program. For example:

```
MOVE DFHVALUE(UOW) TO AREA-A
EXEC CICS ENQ RESOURCE(RESNAME)
  MAXLIFETIME(ARRAY-A)
```

- If the required action is always the same, you can declare the value directly. For example:

```
EXEC CICS ENQ RESOURCE(RESNAME) UOW
```

```
EXEC CICS ENQ RESOURCE(RESNAME) TASK
```

NOSUSPEND

specifies that the application program is not to be suspended if the resource on the ENQ command is unavailable, but the ENQBUSY condition occurs.

Note, however, that if a HANDLE CONDITION for ENQBUSY is active when the command is executed, action, control is passed to the user label supplied in the HANDLE CONDITION. This takes precedence over the NOSUSPEND option but is, of course, negated by either NOHANDLE or RESP.

RESOURCE(data-area)

identifies the resource to be enqueued on by:

- Specifying an area whose address represents the resource.
- Specifying a variable that contains the resource (an employee name, for example). In this case, you must use the LENGTH option.

Conditions

ENQBUSY

occurs when an ENQ command specifies a resource that is unavailable and the NOSUSPEND option is specified, or there is an active HANDLE CONDITION ENQBUSY.

If the NOSUSPEND option is not specified, and the ENQ command specifies a resource that is unavailable, the application program is suspended and the ENQBUSY condition is not raised.

Default action: ignore the condition.

INVREQ

RESP2 values: CVDA values are:

- The MAXLIFETIME option is set with an incorrect CVDA.

Default action: terminate the task abnormally.

LENGERR

RESP2 values:

- The value specified for the LENGTH option is outside the range 1 through 255.

Default action: terminate the task abnormally.

Examples

Two tasks, enqueuing on the same resource and specifying a data area that is the resource, must refer to the same location in storage. They could both, for example, refer to the same location in the CWA.

```
EXEC CICS ENQ RESOURCE(RESNAME)
```

Two tasks, enqueuing on the same resource and specifying a data area that contains a unique argument, can refer to the same location or to different locations, but the contents of the locations must be the same. The length must be supplied in the LENGTH option.

```
EXEC CICS ENQ
  RESOURCE(SOCSECNO)
  LENGTH(8)
```
ENTER TRACENUM

Write a trace entry.

\[
\begin{array}{cccc}
\text{ENTER TRACENUM(data-value)} & \text{FROM(data-area)} & \text{FROMLENGTH(data-area)} & \text{RESOURCE(name)} \\
\text{EXCEPTION} & \\
\end{array}
\]

Conditions: INVREQ, LENGERR

Description

The ENTER TRACENUM command makes a trace entry in the currently active trace destinations. CICS writes the trace entry only if the master and user trace flags are on, unless you specify the EXCEPTION option, in which case a user trace entry is always written, even if the master and user trace flags are off. Exception trace entries are always written to the internal trace table (even if internal tracing is set off), but they are written to other destinations only if they are active.

You can use the exception trace option in an application program to write a trace entry when the program detects an exception or abnormal condition. To do this, include an ENTER TRACENUM(data-value) EXCEPTION command in your program’s exception or abnormal condition error-handling routine.

To write an exception trace entry in an error situation when an application program has given up control, you can issue an ENTER TRACENUM(data-value) EXCEPTION command from a user-written program error program (PEP). See the CICS Customization Guide for programming information about modifying the DFHPEP program.

Note ENTER TRACENUM replaces the earlier ENTER TRACEID command, which is still supported for compatibility with releases of CICS earlier than Version 3. You should use ENTER TRACENUM for all new programs, and whenever you apply maintenance to old programs.

For information about the trace entry format, see CICS Problem Determination Guide.

Options

EXCEPTION

specifies that CICS is to write a user exception trace entry. The EXCEPTION option overrides the master user trace flag, and CICS writes the trace entry even if the user trace flag is off. Exception trace entries are identified by the characters *EXCU when the trace entries are formatted by the trace utility program. See the CICS Problem Determination Guide for more information about user exception trace entries.

FROM(data-area)

specifies a data area whose contents are to be entered into the data field of the trace table entry. If you omit the FROM option, two fullwords of binary zeros are passed.

FROMLENGTH(data-area)

specifies a halfword binary data area containing the length of the trace data, in the range 0–4000 bytes. If FROMLENGTH is not specified, a length of 8 bytes is assumed.

RESOURCE(name)

specifies an 8-character name to be entered into the resource field of the trace table entry.

TRACENUM(data-value)

specifies the trace identifier for a user trace table entry as a halfword binary value in the range 0 through 199.

Conditions

INVREQ

RESP2 values:

1. TRACENUM is outside the range 0 through 199.
2. There is no valid trace destination.
3. The user trace flag is set OFF and EXCEPTION has not been specified.

Default action: terminate the task abnormally.
ENTER TRACENUM

LENGERR
RESP2 values:

4 FROMLENGTH is outside the range 0 through 4000.

Default action: terminate the task abnormally.

Examples

The following COBOL example shows how to write a user trace entry with a trace identifier of 123, with trace data from a data area called USER-TRACE-ENTRY:

```
EXEC CICS ENTER TRACENUM(123)
   FROM(USER-TRACE-ENTRY)
END-EXEC.
```
EXTRACT ATTACH (LUTYPE6.1)

Retrieve values from an LUTYPE6.1 attach header.

```
EXTRACT ATTACH
  ATTACHID(name)
  CONVID(name)
  PROCESS(data-area)
  SESSION(name)
  RPROCESS(data-area)
  RRESOURCE(data-area)
  QUEUE(data-area)
  IUTYPE(data-area)
  DATASTR(data-area)
  RECFM(data-area)
```

Conditions: CBIDERR, INVREQ, NOTALLOC

Description

EXTRACT ATTACH retrieves a set of values that are held in an attach header control block, or that have been built previously. For the command to retrieve information from a received attach Function Management Header (FMH), EIBATT must have been set during a RECEIVE or CONVERSE command.

Options

ATTACHID(name)

specifies that values are to be retrieved from an attach header control block. The name (1–8 characters) identifies this control block to the local task.

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

DATASTR(data-area)

corresponds to the data stream profile field, ATTDSP, in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, no particular significance is given by CICS to the data stream profile field in an attach FMH. For most CICS applications, the option can be omitted.

The value returned in the data area is a halfword binary value. Only the low-order byte is used; the SNA-defined meanings of the bits are as follows:

- **0-7**: reserved - must be set to zero
- **8-11**: 0000 - user-defined
 - 1111 - SCS data stream
 - 1110 - 3270 data stream
 - 1101 - structured field
 - 1100 - logical record management
- **12-15**: defined by the user if bits 8-11 are set to 0000; otherwise reserved (must be set to zero)

IUTYPE(data-area)

corresponds to the interchange unit field, ATTIU, in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, no particular significance is attached by CICS to the interchange unit field in an attach FMH. For most CICS applications, the option can be omitted.

The value returned in the data area is a halfword binary value. Only the low-order 7 bits are used; the SNA-defined meanings of the bits are as follows:

- **0-10**: reserved - must be set to zero
- **11**: 0 - not end of multichain interchange unit
 - 1 - end of multichain interchange unit
- **12,13**: reserved - must be set to zero
- **14,15**: 00 - multichain interchange unit
 - 01 - single-chain interchange unit
 - 10 - reserved
 - 11 - reserved

PROCESS(data-area)

corresponds to the process name, ATTDPN, in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, a transaction running in one system can acquire a session to the second system and can identify the transaction to
be attached; in the second system the identification is
carried in the first chain of data sent across the session.
In general, the first four bytes of data identify the
transaction to be attached. However an attach FMH,
identifying the transaction to be attached, can be built
and sent. The receiving CICS system uses just the first
four bytes of the process name as a transaction name.
No significance is attached by CICS to process names in
attach FMHs sent in chains of data other than the first.
For communication between a CICS system and another
subsystem, refer to documentation supplied by the
subsystem about how to use the process name field in
an attach FMH.

QUEUE(data-area)
corresponds to the queue name, ATTDQN, in an attach
FMH.
For communication between two CICS systems, no
significance is attached by CICS to the queue name in
an attach FMH.
For communication between a CICS system and another
subsystem, refer to documentation supplied by the
subsystem about how to use the queue name field in
an attach FMH.

RECFM(data-area)
corresponds to the deblocking algorithm field, ATTDBA,
in an LUTYPE6.1 attach FMH.
For communication between two CICS systems, no
particular significance is attached by CICS to the
deblocking algorithm field in an attach FMH. For most
CICS applications, the option can be omitted.
For communication between a CICS system and another
subsystem, refer to documentation supplied by the
subsystem about how to use the interchange unit field in
an attach FMH.
The value returned in the data area is a halfword binary
value. Only the low-order byte is used; the SNA-defined
meanings of the bits are as follows:

<table>
<thead>
<tr>
<th>0-7</th>
<th>reserved - must be set to zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-15</td>
<td>X'00' - reserved</td>
</tr>
<tr>
<td></td>
<td>X'01' - reserved</td>
</tr>
<tr>
<td></td>
<td>variable-length</td>
</tr>
<tr>
<td></td>
<td>X'02' - reserved</td>
</tr>
<tr>
<td></td>
<td>X'03' - reserved</td>
</tr>
<tr>
<td></td>
<td>X'04' - chain of RUs</td>
</tr>
<tr>
<td></td>
<td>X'05' through X'FF' - reserved</td>
</tr>
</tbody>
</table>

RESOURCE(data-area)
corresponds to the resource name, ATTPRN, in an
LUTYPE6.1 attach FMH.
For communication between two CICS systems, no
significance is attached by CICS to the resource name in
an attach FMH.

For communication between a CICS system and another
subsystem, refer to documentation supplied by the
subsystem about how to use the resource name field in
an attach FMH.

RPROCESS(data-area)
corresponds to the return process name, ATTRDPN, in an
LUTYPE6.1 attach FMH.
For communication between two CICS systems, no
significance is attached by CICS to the return process
name in an attach FMH.
For communication between a CICS system and another
subsystem, refer to documentation supplied by the
subsystem about how to use the return process name
field in an attach FMH.

RRESOURCE(data-area)
corresponds to the return resource name, ATTRPRN, in an
LUTYPE6.1 attach FMH.
For communication between two CICS systems, no
significance is attached by CICS to the return resource
name in an attach FMH.
For communication between a CICS system and another
subsystem, refer to documentation supplied by the
subsystem about how to use the return resource name
field in an attach FMH.

SESSION(name)
specifies the symbolic identifier (1–4 characters) of a
session TCTTE. This option specifies the alternate
facility to be used.

Conditions

CBIDERR
occurs if the requested attach header control block
cannot be found.
Default action: terminate the task abnormally.

INVREQ
occurs if incorrect data is found.
Default action: terminate the task abnormally.

NOTALLOC
occurs if the facility specified in the command is not
owned by the application.
Default action: terminate the task abnormally.
EXTRACT ATTACH (MRO)

Retrieve values from an MRO attach header.

```
| EXTRACT ATTACH | ATTACHID(name) | PROCESS(data-area) | RESOURCE(data-area) |
|                | CONVID(name)   |                   |                    |
|                | SESSION(name)  |                   |                    |
| RPROCESS(data-area) | RRESOURCE(data-area) | QUEUE(data-area) | IUTYPE(data-area) |
| DATASTR(data-area) | RECFM(data-area) |                   |                    |
```

Conditions: CBIDERR, INVREQ, NOTALLOC

Description

EXTRACT ATTACH retrieves a set of values that are held in an attach header control block, or that have been built previously. For the command to retrieve information from a received attach Function Management Header (FMH), EIBATT must have been set during a RECEIVE or CONVERSE command.

For more information about MRO and IRC, see the CICS Intercommunication Guide.

Options

ATTACHID(name)

specifies that values are to be retrieved from an attach header control block. The name (1–8 characters) identifies this control block to the local task.

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

DATASTR(data-area)

corresponds to the data stream profile field, ATTDSP, in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, no particular significance is given by CICS to the data stream profile field in an attach FMH. For most CICS applications the option can be omitted.

The value returned in the data area is a halfword binary value. Only the low-order byte is used; the SNA-defined meanings of the bits are as follows:

- **0-7** reserved - must be set to zero
- **8-11** 0000 - user-defined
 - 1111 - SCS data stream
 - 1110 - 3270 data stream
 - 1101 - structured field
 - 1100 - logical record management
- **12-15** defined by the user if bits 8-11 are set to 0000; otherwise reserved (must be set to zero)

IUTYPE(data-area)

corresponds to the interchange unit field, ATTIU, in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, no particular significance is attached by CICS to the interchange unit field in an attach FMH. For most CICS applications the option can be omitted.

The value returned in the data area is a halfword binary value. Only the low-order 7 bits are used; the SNA-defined meanings of the bits are as follows:

- **0-10** reserved - must be set to zero
- **11** 0 - not end of multichain interchange unit
 - 1 - end of multichain interchange unit
- **12,13** reserved - must be set to zero
- **14,15** 00 - multichain interchange unit
 - 01 - single chain interchange unit
 - 10 - reserved
 - 11 - reserved

PROCESS(data-area)

corresponds to the process name, ATTDPN, in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, a transaction running in one system can acquire a session to the second system and can identify the transaction to
be attached; in the second system the identification is carried in the first chain of data sent across the session.

In general, the first four bytes of data identify the transaction to be attached. However an attach FMH, identifying the transaction to be attached, can be built and sent. The receiving CICS system uses just the first four bytes of the process name as a transaction name.

No significance is attached by CICS to process names in attach FMHs sent in chains of data other than the first.

For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the process name field in an attach FMH.

QUEUE(data-area)
corresponds to the queue name, ATTDQN, in an attach FMH.

For communication between two CICS systems, no significance is attached by CICS to the queue name in an attach FMH.

For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the queue name field in an attach FMH.

RECFM(data-area)
corresponds to the deblocking algorithm field, ATTDDBA, in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, no particular significance is attached by CICS to the deblocking algorithm field in an attach FMH. For most CICS applications, the option can be omitted.

For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the interchange unit field in an attach FMH.

The value returned in the data area is a halfword binary value. Only the low-order byte is used; the SNA-defined meanings of the bits are as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>reserved - must be set to zero</td>
</tr>
<tr>
<td>8-15</td>
<td>X'00' - reserved</td>
</tr>
<tr>
<td></td>
<td>X'01' - variable-length</td>
</tr>
<tr>
<td></td>
<td>variable-blocked</td>
</tr>
<tr>
<td></td>
<td>X'02' - reserved</td>
</tr>
<tr>
<td></td>
<td>X'03' - reserved</td>
</tr>
<tr>
<td></td>
<td>X'04' - chain of RUs</td>
</tr>
<tr>
<td></td>
<td>X'05' through X'FF' - reserved</td>
</tr>
</tbody>
</table>

For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the resource name field in an attach FMH.

RPROCESS(data-area)
corresponds to the return process name, ATTRDPN, in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, no significance is attached by CICS to the return process name in an attach FMH.

For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the return process name field in an attach FMH.

RRESOURCE(data-area)
corresponds to the return resource name, ATTRPRN, in an LUTYPE6.1 attach FMH.

For communication between two CICS systems, no significance is attached by CICS to the return resource name in an attach FMH.

For communication between a CICS system and another subsystem, refer to documentation supplied by the subsystem about how to use the return resource name field in an attach FMH.

SESSION(name)
specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used.

Conditions

CBIDERR
occurring if the requested attach header control block cannot be found.

Default action: terminate the task abnormally.

INVREQ
occurring if incorrect data is found.

Default action: terminate the task abnormally.

NOTALLOC
occurring if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.
EXTRACT ATTRIBUTES (APPC)

Obtain the state of the APPC conversation.

```
EXTRACT ATTRIBUTES ── CONVID(name) ── STATE(cvda) ──
```

Conditions: INVREQ, NOTALLOC

Description

EXTRACT ATTRIBUTES extracts conversation state information for APPC mapped conversations.

Options

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

For compatibility with earlier releases, SESSION is accepted as a synonym for CONVID. New programs should use CONVID.

By default, the principal facility is assumed.

STATE(cvda)

gets the state of the transaction program. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLLBACK
- SEND
- SYNFREE
- SYNRRECEIVE
- SYNCSSEND

Conditions

INVREQ

RESP2 values:

- 200 A distributed program link server application explicitly, or implicitly by default, specified the function-shipping session (its principal facility) on the CONVID option.

also occurs (RESP2 not set) in any of the following situations:

- The command is issued against a CPI-Communications conversation.
- The command is issued against an APPC basic conversation. (A GDS EXTRACT ATTRIBUTES should have been used instead.)

Default action: terminate the task abnormally.

NOTALLOC

occurs if the specified CONVID value does not relate to a conversation owned by the application.

Default action: terminate the task abnormally.
EXTRACT ATTRIBUTES (MRO)

Extract attributes from an MRO conversation.

Options

CONVID(name)

Identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

SESSION(name)

Specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used.

If both this option and CONVID are omitted, the principal facility for the task is used.

STATE(cvda)

Gets the state of the transaction program. The cvda values returned by CICS are:

- ALLOCATED
- FREE
- PENDFREE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNCSEND

Conditions

INVREQ

RESP2 values:

200 A distributed program link server application explicitly, or implicitly by default, specified the function-shipping session (its principal facility) on the CONVID option.

Also occurs (RESP2 not set) in any of the following situations:

- An incorrect command has been issued for the terminal or LU in use.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.
EXTRACT CERTIFICATE

Obtain information from the client certificate received over a TCP/IP service that specified client authentication.

Description

EXTRACT CERTIFICATE allows the application to obtain information from the X.509 certificate that was received from a client during a Secure Sockets Layer (SSL) handshake over a TCPIPSERVICE that specified SSL(CLIENTAUTH).

The certificate contains fields that identify the owner (or subject) of the certificate, and fields that identify the Certificate Authority that issued the certificate. You can select the fields that you require by specifying the OWNER or ISSUER option. You cannot retrieve both OWNER and ISSUER fields with one command.

Options

- **CERTIFICATE(ptr-ref)** specifies a pointer reference to be set to the address of the full binary certificate received from the client. The pointer reference is valid until the next CICS command or the end of task.

- **COMMONNAME(ptr-ref)** specifies a pointer reference to be set to the common name from the client certificate. The pointer reference is valid until the next CICS command or the end of task.

- **COMMONNAMLEN(data-area)** specifies a fullword binary data area to be set to the length of the common name from the client certificate.

- **COUNTRY(ptr-ref)** specifies a pointer reference to be set to the address of the country from the client certificate. The pointer reference is valid until the next CICS command or the end of task.

- **COUNTRYLEN(data-area)** specifies a halfword binary data area to be set to the length of the country from the client certificate.

- **LOCALITY(ptr-ref)** specifies a pointer reference to be set to the address of the locality from the client certificate. The pointer reference is valid until the next CICS command or the end of task.

- **LOCALITYLEN(data-area)** specifies a halfword binary data area to be set to the length of the locality from the client certificate.

- **ORGANIZATION(ptr-ref)** specifies a pointer reference to be set to the address of the organization from the client certificate. The pointer reference is valid until the next CICS command or the end of task.

- **ORGANIZATLEN(data-area)** specifies a halfword binary data area to be set to the length of the organization from the client certificate.

- **ORGUNIT(ptr-ref)** specifies a pointer reference to be set to the address of the organization unit from the client certificate. The pointer reference is valid until the next CICS command or the end of task.

- **ORGUNITLEN(data-area)** specifies a halfword binary data area to be set to the length of the organization unit from the client certificate.

Conditions: INVREQ, LENGERR
ORGUNITLEN(data-area)
specifies a halfword binary data area to be set to the length of the organization unit from the client certificate.

OWNER
indicates that the values returned by this command refer to the owner of the certificate.

SERIALNUM(ptr-ref)
specifies a pointer reference to be set to the address of the serial number of the certificate assigned by the certificate issuer. The pointer reference is valid until the next CICS command or the end of task.

SERIALNUMLEN(data-area)
specifies a halfword binary data area to be set to the length of the serial number.

STATE(ptr-ref)
specifies a pointer reference to be set to the address of the state or province from the client certificate. The pointer reference is valid until the next CICS command or the end of task.

STATELEN(data-area)
specifies a halfword binary data area to be set to the length of the state or province from the client certificate.

USERID(ptr-ref)
specifies a pointer reference to be set to the userid connected with the client certificate. The pointer reference is valid until the next CICS command or the end of task.

Conditions

INVREQ
occurs for the following conditions:

- the command is being issued in a non-CICS Web Interface application.
- the command is being issued for a non-HTTP request.
- if an error occurs retrieving the certificate data from CICS intermediate storage.

LENGERR
the string being extracted is longer than the length specified for one of the options.
EXTRACT LOGONMSG

Access VTAM logon data.

```
EXTRACT LOGONMSG INTO(data-area) LENGTH(data-area) SET(ptr-ref)
```

Condition: NOTALLOC

Description

EXTRACT LOGONMSG accesses VTAM logon data. This data may have been specified by the terminal operator at logon or in the ISSUE PASS command, for example. This data is only available if the system initialization parameter LGNMSG=YES is specified. The data can only be extracted once. It is possible to force the first transaction that runs on the terminal to be that which issues EXTRACT LOGONMSG by using the the system initialization parameter GMTRAN.

All the logon data is extracted and its length placed in the field specified by the LENGTH option. Because the LENGTH option cannot be used to limit the amount of data extracted, it is recommended that a field of 256 bytes is always used for this option.

If you use the SET option, the VTAM logon data is not freed until the session terminates (CLSDST). If you use the INTO option, the VTAM logon data is copied into user storage and then freed.

Options

INTO(data-area)

specifies the receiving field for the data extracted.

LENGTH(data-area)

specifies the length, as a halfword binary value, of the data extracted. If no data is available, LENGTH is set to zero.

SET(ptr-ref)

specifies the pointer reference that is to be set to the address of the data extracted. The pointer reference, unless changed by other commands or statements, is valid until the next EXTRACT LOGONMSG command or the end of task.

If DATALOCATION(ANY) is associated with the application program, the address of the data can be above or below the 16MB line.

If DATALOCATION(BELOW) is associated with the application program, and the data resides above the 16MB line, the data is copied below the 16MB line, and the address of this copy is returned.

If TASKDATAKEY(USER) is specified for the running task, and storage protection is active, the data returned is in a user-key. If TASKDATAKEY(CICS) is specified and storage protection is active, the data returned is in a CICS-key.

Conditions

NOTALLOC

occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.
EXTRACT PROCESS

EXTRACT PROCESS

Retrieve values from APPC conversation attach header.

Conditions: INVREQ, LENGERR, NOTALLOC

Description

EXTRACT PROCESS lets an application program access conversation-related data, specified to CICS when the program is attached. The attach receiver does not have to execute an EXTRACT PROCESS command unless it requires this information.

The EXTRACT PROCESS command is valid only on an APPC conversation that is the principal facility for the task.

Options

CONVID(name)
identifies the conversation to which the command relates. The 4-character name identifies the token representing the principal session (EIBTRMID).

For compatibility with earlier releases, SESSION is accepted as a synonym for CONVID. New programs should use CONVID.

If CONVID and SESSION are both omitted, the principal facility for the task is used by default.

MAXPROCLEN(data-value)
specifies the buffer length of PROCNAME. If MAXPROCLEN is not specified, the buffer is assumed to have 32 bytes.

PIPLENGTH(data-area)
specifies a halfword binary data area in which the total length of the process initialization parameter (PIP) list is returned.

PIPLIST(ptr-ref)
specifies a pointer reference that is set to the address of a CICS-provided data area containing a PIP list. This list contains variable-length records in the same format as the list in the CONNECT PROCESS command. A returned value of zero means that no PIP data has been received by CICS.

PROCNAME(data-area)
specifies the data area to receive the process name specified by the remote system that caused the task to start. The data area can be 1–64 bytes long. The process name is padded on the right with blanks if it is too short. The PROCNAME data area should not be shorter than the MAXPROCLEN value.

SYNCELEVEL(data-area)
specifies a halfword data area that is set by CICS to the SYNCELEVEL value. For further information about synchronization levels, see the CICS Intercommunication Guide.

Conditions

INVREQ
RESP2 values:

200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

also occurs (RESP2 not set) in any of the following situations:

- EXTRACT PROCESS has been used on a conversation other than APPC mapped (for example, LUTYPE6.1, APPC basic, or CPI Communications).
- EXTRACT PROCESS has been used on a conversation that was not started by input from the network, and whose session is not a principal facility.
- The command is issued against a CPI-Communications conversation.
Default action: terminate the task abnormally.

LENGERR
occurs if the actual length of PROCNAME is greater than MAXPROCLEN, or greater than 32 bytes if MAXPROCLEN is not specified.
Default action: terminate the task abnormally.

NOTALLOC
occurs if the specified CONVID value specified does not relate to a conversation owned by the application.
Default action: terminate the task abnormally.
EXTRACT TCPIP

Obtain information about TCPIP characteristics of the current transaction.

EXTRACT—TCPIP

- CLIENTNAME(data-area)
- CNAMELENGTH(data-area)
- SERVERNAME(data-area)
- SNAMELENGTH(data-area)
- SSLTYPE(CVDA)
- TCPIPSERVICE(data-area)
- PORTNUMBER(data-area)
- PORTNUMNU(data-area)

Conditions: INVREQ, LENGERR

Options

- CADDRLENGTH(data-area)
 Specifies the length of the buffer supplied on the CLIENTADDR option, and is set to the actual length of the data returned to the application. If the data exceeds the buffer length, a LENGERR condition is raised and the data is truncated.

- CLIENTADDR(data-area)
 Specifies a buffer to contain the client's TCP/IP address.

- CLIENTADDRNU(data-area)
 Specifies a fullword binary field containing the client's TCP/IP address in binary form.

- CLIENTNAME(data-area)
 Specifies a buffer to contain the client's name as known by the Domain Name Server.

- CNAMELENGTH(data-area)
 Specifies the length of the buffer supplied on the CLIENTNAME option, and is set to the actual length of the data returned to the application. If the data exceeds the buffer length, a LENGERR condition is raised and the data is truncated.

- PORTNUMBER(data-area)
 Specifies a 5-character field to contain the port number associated with this transaction in character form. This is the port on which the incoming data that initiated this transaction was received.

- PORTNUMNU(data-area)
 Fullword field to contain the port number associated with this transaction in binary form. This is the port on which the incoming data that initiated this transaction was received.

- SADDRLENGTH(data-area)
 Specifies the length of the buffer supplied on the SERVERADDR option, and is set to the actual length of the data returned to the application. If the data exceeds the buffer length, a LENGERR condition is raised and the data is truncated.

- SERVERADDR(data-area)
 Specifies a buffer to contain the server's TCP/IP address in dotted decimal character form (nnn.nnn.nnn.nnn).

- SERVERADDRNU(data-area)
 Specifies a fullword binary field containing the server's TCP/IP address in binary form.

- SERVERNAME(data-area)
 Specifies a buffer to contain the server's name as known by the Domain Name Server.

- SNAMELENGTH(data-area)
 Specifies the length of the buffer supplied on the SERVERNAME option, and is set to the actual length of the data returned to the application. If the data exceeds the buffer length, a LENGERR condition is raised and the data is truncated.

- SSLTYPE(CVDA)
 Returns a CVDA indicating whether the Secure Sockets Layer (SSL) is being used to secure communications for this transaction. Possible values are:
 - SSL
 - NOSSL
 - CLIENTAUTH

- TCPIPSERVICE(data-area)
 An 8-byte field to contain the name of the TCPIPSERVICE associated with this transaction.
Conditions

INVREQ
- The command is being issued in a non-TCPIP application.

LENGERR
- The string being extracted is longer than the length specified for one of the options.
EXTRACT TCT

Convert an 8-character name to a 4-character name on an LUTYPE6.1 logical unit.

Condition: INVREQ, NOTALLOC

Description

EXTRACT TCT converts the 8-character VTAM network name for a logical unit into the corresponding 4-character name it is known by in the local CICS system.

Options

NETNAME(name)
- specifies the 8-character name of the logical unit in the VTAM network.

SYSID(systemname)
- specifies the variable to be set to the equivalent local name of the system.

TERMID(data-area)
- specifies the variable to be set to the equivalent local name of the terminal.

Conditions

INVREQ
- occurs if NETNAME is not valid.
 - Default action: terminate the task abnormally.

NOTALLOC
- occurs if the facility specified in the command is not owned by the application.
 - Default action: terminate the task abnormally.
FORMATTIME

Transform absolute date and time into a specified format.

FORMATTIME—ABSTIME(data-area) ──DATE(data-area) ──FULLDATE(data-area) ──DATEFORM(data-area)─

DATESEP—(data-value) ──DAYCOUNT(data-area) ──DAYOFMONTH(data-area) ─

DAYOFWEEK(data-area) ──DOMMYY(data-area) ──DDMMYYYY(data-area) ──MMDDYY(data-area)─

MMDDYYYY(data-area) ──MONTHOFYEAR(data-area) ──TIME(data-area) ──TIMESEP—(data-value)─

YEAR(data-area) ──YYDDD(data-area) ──YYDDMM(data-area) ──YYMMDD(data-area)─

YYYYDDD(data-area) ──YYYYDDMM(data-area) ──YYYYMMDD(data-area)─

Condition: INVREQ

Description

FORMATTIME transforms the absolute date and time into any of a variety of formats. Normally, the ABSTIME argument is the value returned by an ASKTIME ABSTIME command.

If the milliseconds come to 500 or more, the returned seconds and, if necessary, the minutes and hours, are rounded up. The day, month, and year are, however, never rounded up. However, in the case where the ABSTIME argument contains a value representing the half-second before midnight, no rounding is performed, and the TIME parameter returns 23:59:59.

To obtain an elapsed time in a particular format, the ABSTIME data value can be the difference between two values returned by ASKTIME, and options such as DAYCOUNT(d) and TIME(t) can be specified.

Options

ABSTIME(data-area)

specifies the data value for the time, in packed decimal, since 00:00 hours on 1 January 1900 (in milliseconds rounded to the nearest hundredth of a second) that is to be converted to an alternative format.

The format of the parameter is:

COBOL: PIC 9(15) COMP-3
C: char data_ref[8];
PL/I: FIXED DEC(15);
ASM: PL8

DATE(data-area)

specifies the variable that is to receive the date in the format specified in the DATFORM system initialization parameter. A separator is present if requested by the DATESEP option. If no separator is requested, the returned value is left-justified in the 8-character user field. You should normally use this option only when a date is needed for output purposes. Where a date is needed for analysis, you should request the date in explicit form, for example, using the MMDDYY option.

DATEFORM(data-area)

specifies the format of the installation-defined date. CICS returns YYMMDD, DDMMYY, or MMDDYY (six characters) according to the DATFORM system initialization parameter.

DATESEP(data-value)

specifies the character to be inserted as the separator between the year and the month, and between the day and the month; or between the year and the day if form YYDDD is specified.

If you omit this option, no separator is supplied. If you omit "data-value", a slash (/) is assumed as the separator.

DAYCOUNT(data-area)

returns the number of days since 1 January 1900 (day 1), as a fullword binary number. This is useful if you need to compare the current date with a previous date that has, for example, been stored in a data set.
DAYOFMONTH(data-area)
returns the number of the day in the month as a fullword binary number.

DAYOFWEEK(data-area)
returns the relative day number of the week as a fullword binary number: Sunday=0, Saturday=6. This number can be converted to a textual form of day in any language.

DDMMYY(data-area)
specifies the 8-character user field where CICS is to return the date, in month/day/year format (for example, 11/21/95). A separator is present if requested by the DATESEP option. If no separator is requested, the returned value is left-justified in the 8-character user field.

DDMMYYYY(data-area)
specifies the 10-character user field where CICS is to return the date, in month/day/year format (for example, 11/21/98). A separator is present if requested by the DATESEP option. If no separator is requested, the returned value is left-justified in the 8-character user field.

FULLDATE(data-area)
specifies the 10-character user field where CICS is to return the date, in the format specified in the DATFORM system initialization parameter, with the year expanded to 4 digits. A separator is present if requested by the DATESEP option. If no separator is requested, the returned value is left-justified in the 10-character user field.

MMDDYY(data-area)
specifies the 8-character user field in which CICS is to return the date, in month/day/year format (for example, 10/21/95). A separator is present if requested by the DATESEP option. If no separator is requested, the returned value is left-justified in the 8-character user field.

MMDDYYYY(data-area)
specifies the 10-character user field where CICS is to return the date, in month/day/year format (for example, 11/21/1995). A separator is present if requested by the DATESEP option. If no separator is requested, the returned value is left-justified in the 10-character user field.

MONTHOFYEAR(data-area)
“data-area” is set to the relative month number of the year as a fullword binary number (January=1, December=12). You can convert this number, in your application program, to the name of the month in any language.

TIME(data-area)
“data-area” is set as an 8-character field to the current 24-hour clock time in the form hh:mm:ss, where the separator is specified by the TIMESEP option.

TIMESEP(data-value)
specifies the character to be used as the separator in the returned time. If you omit this option, no separator is assumed and six bytes are returned in an 8-character field. If you omit the “data-value”, a colon (:) is used as a separator.

YEAR(data-area)
specifies the full 4-figure number of the year as a fullword binary number (for example, 1995, 2001).

YYDMM(data-area)
specifies the 8-character user field where CICS is to return the date, in year/month/day format (for example, 95/10/21). A separator is present if requested by the DATESEP option. If no separator is requested, the returned value is left-justified in the 8-character user field.

YYDDMM(data-area)
specifies the 8-character user field where CICS is to return the date, in year/month/day format (for example, 95/10/31). A separator is present if requested by the DATESEP option. If no separator is requested, the returned value is left-justified in the 8-character user field.

YYMMDD(data-area)
specifies the 8-character user field where CICS is to return the date, in year/month/day format (for example, 95/10/21). A separator is present if requested by the DATESEP option. If no separator is requested, the returned value is left-justified in the 8-character user field.

YYYYDDMM(data-area)
specifies the 10-character user field where CICS is to return the date, in year/month/day format (for example, 1995/11/21). A separator is present if requested by the DATESEP option. If no separator is requested, the returned value is left-justified in the 10-character user field.

YYYYMMDD(data-area)
specifies the 10-character user field where CICS is to return the date, in year/month/day format (for example, 1995/06/21). A separator is present if requested by the DATESEP option. If no separator is requested, the returned value is left-justified in the 10-character user field.
Conditions

INVREQ

RESP2 values:

1 The ABSTIME option is in an incorrect form.

Default action: terminate the task abnormally.

Examples

The following example shows the effect of some of the options of the command. Let “utime” contain the value 002837962864828 in milliseconds.

```
EXEC CICS ASKTIME ABSTIME(utime)
EXEC CICS FORMATTIME ABSTIME(utime)
    DATESEP('-') DDMMYY(date)
    TIME(time) TIMESEP
```

This gives the values 06-12-89 for “date” and 19:01:05 for “time”.
FREE

FREE

Return a terminal or logical unit.

```
FREE

Condition: NOTALLOC
```

Description

FREE returns a terminal or logical unit when the transaction owning it no longer requires it. The principal facility is freed.

If you are running EDF, and the transaction frees the principal facility, EDF is terminated.

Conditions

NOTALLOC

occurs if the task is not associated with the terminal.

Default action: terminate the task abnormally.
FREE (APPC)

Return an APPC mapped session to CICS.

FREE (APPC)

Description

FREE returns an APPC session to CICS when a transaction owning it no longer requires it. The session can then be allocated for use by other transactions.

If you omit CONVID, the principal facility is freed. Facilities not freed explicitly are freed by CICS when the task terminates.

If you are running EDF, and the transaction frees the principal facility, EDF is terminated.

Options

CONVID(name)

identifies the APPC mapped session to be freed. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

If this option is omitted, the principal facility is assumed.

STATE(cvda)

gets the state of the current conversation. The STATE option on a FREE command returns a cvda code of 00 if there is no longer an active conversation. The other output cvda values are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNCSEND

Conditions

INVREQ

RESP2 values:

200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

also occurs (RESP2 not set) in any of the following situations:

- The CONVID value specified in the command relates to a basic (unmapped) APPC conversation.
- The CONVID value specified in the command relates to a CPI-Communications conversation.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the specified CONVID value does not relate to a conversation owned by the application.

Default action: terminate the task abnormally.
FREE (LUTYPE6.1)

FREE (LUTYPE6.1)

Return LUTYPE6.1 sessions to CICS.

```
FREE CONVID(name) SESSION(name)
```

Conditions: INVREQ, NOTALLOC

Description

FREE returns an LUTYPE6.1 session to CICS when a transaction owning it no longer requires it. The session can then be allocated for use by other transactions.

If you omit both CONVID and SESSION, the principal facility is freed. Facilities not freed explicitly are freed by CICS when the task terminates.

If you are running EDF, and the transaction frees the principal facility, EDF is terminated.

Options

CONVID(name)

identifies the LUTYPE6.1 session to be freed. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

SESSION(name)

specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used.

Conditions

INVREQ

occurs if the session specified in the command was allocated for a basic (unmapped) APPC conversation. (See also EIBRCODE in Appendix A, “EXEC interface block” on page 387.)

Default action: terminate the task abnormally.

NOTALLOC

occurs if the session specified in the command is not owned by the application.

Default action: terminate the task abnormally.
FREE (MRO)

Return MRO sessions to CICS.

```
FREE CONVID(name) SESSION(name) STATE(cvda)
```

Conditions: INVREQ, NOTALLOC

Description

FREE returns an MRO session to CICS when a transaction owning it no longer requires it. The session can then be allocated for use by other transactions.

If you omit both CONVID and SESSION, the principal facility is freed. Facilities not freed explicitly are freed by CICS when the task terminates.

If you are running EDF, and the transaction frees the principal facility, EDF is terminated.

Options

CONVID(name)

identifies the MRO session to be freed. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

SESSION(name)

specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used.

STATE(cvda)

gets the state of the current conversation. The STATE on a FREE command returns a cvda code of 00 if there is no longer an active conversation. The other output cvda values are:

- ALLOCATED
- FREE
- PENDFREE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNCSEND

Conditions

INVREQ

occurs in any one of the following situations:

- The session specified in the command was allocated for a basic (unmapped) APPC conversation
- The session is in the wrong state to be freed.

(See also EIBRCODE in Appendix A, “EXEC interface block” on page 387.)

Default action: terminate the task abnormally.

NOTALLOC

occurs if the session specified in the command is not owned by the application.

Default action: terminate the task abnormally.
FREEMAIN

Release main storage acquired by a GETMAIN command.

\[\text{FREEMAIN (DATA(data-area))} \]

Condition: INVREQ

Note for dynamic transaction routing

Using FREEMAIN of storage GETMAINed with SHARED, or of a resource defined with RELOAD=YES that has been LOADED could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the CICS Application Programming Guide for more information about transaction affinities.

Description

FREEMAIN releases main storage previously acquired by a GETMAIN command issued by the application, or by a LOAD for a program, map, or table, defined with RELOAD=YES. If the task that GETMAINed the storage or LOADed the program does not release it, CICS releases it at task end, unless:

- The GETMAIN command specified the SHARED option.
- The program is defined with RELOAD=YES.
- The program is defined with RELOAD=NO but was LOADed with the HOLD option.

In the first two cases, the storage remains allocated until some other task issues a FREEMAIN to release it. In the third case, the program remains available until it is RELEASEd by another task.

You can release CICS-key storage from a program only if it is being executed in CICS key. If the previously-acquired storage was obtained from CICS-key storage, and the program issuing the FREEMAIN is in user-key, an INVREQ condition occurs with a RESP2 value of 2.

Options

DATA(data-area)

specifies the data area of main storage to be released.

This storage must have been acquired by a previous GETMAIN command, except in the case of BMS pages.

(For more guidance about BMS pages, see the description of the SET option in the CICS Application Programming Guide.)

Note that this option specifies the data area that was acquired by the GETMAIN command, not the pointer reference that was set to that address. You must use the DATAPointER option to specify a pointer-reference:

DATA and DATAPointER are mutually exclusive.

DATAPointER(ptr-value)

specifies the address of the main storage to be released.

This option is an alternative to the DATA option, and specifies the pointer reference that was returned by a GETMAIN command using the SET option.

The length of storage released is the length obtained by the GETMAIN.

Conditions

INVREQ

RESP2 values:

1. The storage specified by the DATA or DATAPointER parameter is not storage acquired by a GETMAIN command.

2. The storage area specified by the DATA or DATAPointER parameter is in CICS-key storage, and the program issuing the FREEMAIN command is in user-key.

Default action: terminate the task abnormally.
Examples

Here are some examples of the use of FREEMAIN.

COBOL:

```
DATA DIVISION.
WORKING-STORAGE SECTION.
  77 AREA-POINTER USAGE IS POINTER.
LINKAGE SECTION.
  01 WORKAREA PIC X(100).
PROCEDURE DIVISION.
  EXEC CICS GETMAIN SET(AREA-POINTER)
   LENGTH(100)
   END-EXEC.
  .
  SET ADDRESS OF WORKAREA TO AREA-POINTER.
  .
  EXEC CICS FREEMAIN DATA(WORKAREA)
  END-EXEC.
  EXEC CICS RETURN
  END-EXEC.
```

Alternatively, the previous COBOL example could free the storage by the following command:

```
EXEC CICS FREEMAIN DATAPORTER(AREA-POINTER)
END-EXEC.
```

C:

```
#define MAINSIZE 100;
main()
{
    char *buffer;
    struct eib_record dfheiptr;
    EXEC CICS ADDRESS EIB(dfheiptr);
    EXEC CICS GETMAIN SET(buffer)
    LENGTH(MAINSIZE);
    buffer[2] = 'a';
    .
    EXEC CICS FREEMAIN DATA(buffer);
    EXEC CICS RETURN;
}
```

PL/I:

```
DCL AREA_PTR POINTER,
   WORKAREA CHAR(100) BASED(AREA_PTR);
   .
   .
EXEC CICS GETMAIN SET(AREA_PTR) LENGTH(100);
EXEC CICS FREEMAIN DATA(WORKAREA);
```

Assembler:

```
WORKAREA DS CL100
  .
  .
  EXEC CICS GETMAIN SET(9) LENGTH(100)
  USING WORKAREA,9
  EXEC CICS FREEMAIN DATA(WORKAREA)
```

Alternatively, you can free storage using the DATAPORTER option as shown in the following example:

```
WORKAREA DS CL100
  .
  .
  DROP 9
  .
  EXEC CICS FREEMAIN DATAPORTER(9)
```
GDS ALLOCATE

Acquire a session to a remote system for use by APPC basic conversation (assembler-language and C programs only).

```
GDS ALLOCATE ── SYSID(systemname) ── CONVID(data-area) ── RETCODE(data-area)
                ── MODENAME(name) ── PARTNER(name)
                ── NOQUEUE ── STATE(cvda)
```

Description

GDS ALLOCATE acquires a session to a remote system.

The return code is given in RETCODE (see Table 1 on page 119). For a list of return code values, see the CICS Distributed Transaction Programming Guide. EXEC CICS conditions are never raised on GDS commands.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

CONVID(data-area)

specifies the 4-character application data area that is to contain the token returned by an ALLOCATE command to identify the allocated conversation. This token is required in subsequent GDS commands issued on the conversation.

MODENAME(name)

specifies the name of the mode group from which the session is to be acquired. If you specify SYSID and omit MODENAME, CICS selects a modename from those defined for the system.

NOQUEUE

specifies that the request to allocate a session is not to be queued when a suitable APPC session cannot be acquired immediately. A session is acquired immediately only if it is a bound contention winner that is not already allocated to another conversation.

The return code in RETCODE indicates whether or not a session has been acquired.

If there is a delay, the program waits until the session has been acquired.

PARTNER(name)

specifies the name (eight characters) of a set of definitions that include the names of a remote LU (NETNAME) and a communication profile to be used on the allocated session. For APPC basic conversations, the only relevant attribute set by the profile is MODENAME.

If you use this option as an alternative to SYSID and MODENAME, CICS uses the NETNAME and MODENAME from the PARTNER definition.

RETCODE(data-area)

specifies the 6-byte application data area into which return code information is to be moved.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNCSEND

SYSID(systemname)

specifies the remote system to which an APPC session is to be allocated. The name, which is 1–4 characters, identifies an entry (defined as an APPC connection) in the CICS terminal control table.
Table 1. GDS ALLOCATE return codes

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 0C 00</td>
<td>SYSID is unrecognized.</td>
</tr>
<tr>
<td>01 0C 04</td>
<td>SYSID is not an LUTYPE6.2 connection name.</td>
</tr>
<tr>
<td>01 04 04</td>
<td>NOQUEUE is specified but no bound connection-winner sessions are available.</td>
</tr>
<tr>
<td>01 04 08</td>
<td>MODENAME is not known.</td>
</tr>
<tr>
<td>01 04 0C</td>
<td>The MODENAME value is SNASVCMG which is restricted to use by CICS.</td>
</tr>
<tr>
<td>01 04 0C</td>
<td>VTAM has no class of service (COS) table for the MODENAME value.</td>
</tr>
<tr>
<td>01 04 10</td>
<td>The task was canceled during queuing of the command.</td>
</tr>
<tr>
<td>01 04 14</td>
<td>All modegroups are closed.</td>
</tr>
<tr>
<td>01 04 14</td>
<td>The requested modegroup is closed.</td>
</tr>
<tr>
<td>01 04 18</td>
<td>The requested modegroup is draining (closing down).</td>
</tr>
<tr>
<td>01 08 00</td>
<td>All sessions in the requested modegroup are unusable.</td>
</tr>
<tr>
<td>01 08 00</td>
<td>The connection is in quiesce state.</td>
</tr>
<tr>
<td>01 08 00</td>
<td>The connection is out of service.</td>
</tr>
<tr>
<td>01 08 00</td>
<td>The connection is not acquired.</td>
</tr>
<tr>
<td>01 08 00</td>
<td>The requested modegroup’s local max (maximum permitted number of sessions) is 0.</td>
</tr>
<tr>
<td>01 08 00</td>
<td>The VTAM ACB is closed.</td>
</tr>
<tr>
<td>01 0C 14</td>
<td>The NETNAME specified in the PARTNER definition is not known.</td>
</tr>
<tr>
<td>02 0C 00</td>
<td>PARTNER is not known.</td>
</tr>
<tr>
<td>06 00 00</td>
<td>The PROFILE specified in the PARTNER definition is not known.</td>
</tr>
</tbody>
</table>
GDS ASSIGN

Get identifier of principal facility in use by APPC basic conversation (assembler-language and C programs only).

```
GDS ASSIGN ─ PRINCONVID(data-area) ─ PRINSYSID(data-area) ─ RETCODE(data-area) ─
```

Description

GDS ASSIGN gets the identifier of the principal facility.

The return code is given in RETCODE (see Table 2). For a list of return code values, see the CICS Distributed Transaction Programming Guide. EXEC CICS conditions are never raised on GDS commands.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

- **PRINCONVID(data-area)** specifies a 4-byte data area in which the conversation token (CONVID) of the principal facility is to be returned.

- **PRINSYSID(data-area)** specifies a 4-byte data area in which the SYSID of the principal facility is to be returned.

- **RETCODE(data-area)** specifies the 6-byte application data area into which return code information is to be moved.

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 00</td>
<td>Principal facility is not APPC.</td>
</tr>
<tr>
<td>03 04</td>
<td>Principal facility is not basic.</td>
</tr>
<tr>
<td>04</td>
<td>No terminal principal facility exists.</td>
</tr>
</tbody>
</table>

Table 2. GDS ASSIGN return codes
GDS CONNECT PROCESS

Initiate APPC basic conversation (assembler-language and C programs only).

GDS CONNECT PROCESS

`CONVID(name)`
identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed GDS ALLOCATE command, or the token representing the principal session (returned by a previously executed GDS ASSIGN command).

`PROCNAME(name)`
specifies the name of the remote application. The APPC architecture allows names of lengths (1–64 bytes), but leaves each product free to set its own maximum. If the remote system is CICS, you can use the standard 4-character transaction ID. You can also use the TPNAME value in the transaction definition.

`PROCLENGTH(data-value)`
specifies the length (as a halfword binary value in the range 1–64) of the target process name.

`PARTNER(name)`
specifies the name (8 characters) of a set of definitions that includes the name (or extended name) of a remote partner transaction (TPNAME or XTPNAME). You can use this option as an alternative to PROCNAME and PROCLENGTH.

`PIPLIST(data-area)`
specifies the PIP data that is to be sent to the remote process. See the CICS Distributed Transaction Programming Guide for information about PIP data.

`PIPLENGTH(data-value)`
specifies the total length of the process initialization parameter (PIP) list specified on a CONNECT PROCESS command.

`CONVDATA(data-area)`
specifies the 24-byte application data area into which conversation-related information is to be moved. A description of the format of the data area is given in the discussion of CONVDATA fields in the CICS Distributed Transaction Programming Guide.

Description

EXEC CICS conditions are never raised on GDS commands. The return code is given in RETCODE (see Table 3 on page 122). For a list of return code values, see the CICS Distributed Transaction Programming Guide. EXEC CICS conditions are never raised on GDS commands.

GDS CONNECT PROCESS allows the application program to specify a partner application that is to run in the remote system.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

`CONVDATA(data-area)`
specifies the 24-byte application data area into which conversation-related information is to be moved. A description of the format of the data area is given in the discussion of CONVDATA fields in the CICS Distributed Transaction Programming Guide.

`CONVID(name)`
specifies the total length of the process initialization parameter (PIP) list specified on a CONNECT PROCESS command.

`PROCNAME(name)`
specifies the name of the remote application. The APPC architecture allows names of lengths (1–64 bytes), but leaves each product free to set its own maximum. If the remote system is CICS, you can use the standard 4-character transaction ID. You can also use the TPNAME value in the transaction definition.

`PROCLENGTH(data-value)`
specifies the length (as a halfword binary value in the range 1–64) of the target process name.

`PARTNER(name)`
specifies the name (8 characters) of a set of definitions that includes the name (or extended name) of a remote partner transaction (TPNAME or XTPNAME). You can use this option as an alternative to PROCNAME and PROCLENGTH.

`PIPLIST(data-area)`
specifies the PIP data that is to be sent to the remote process. See the CICS Distributed Transaction Programming Guide for information about PIP data.

`PIPLENGTH(data-value)`
specifies the total length of the process initialization parameter (PIP) list specified on a CONNECT PROCESS command.

`CONVDATA(data-area)`
specifies the 24-byte application data area into which conversation-related information is to be moved.

`RETCODE(data-area)`
specifies the 6-byte application data area into which return code information is to be moved.

`STATE(cvda)`
gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNSEND
GDS CONNECT PROCESS

SYNLEVEL(data-value)

specifies the synchronization level (halfword binary value) desired for the current conversation. The possible values are:

0 None
1 Confirm
2 Syncpoint

Table 3. GDS CONNECT PROCESS return codes

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 0C 00</td>
<td>PARTNER is not known.</td>
</tr>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is not APPC.</td>
</tr>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is in use by CPI Communications.</td>
</tr>
<tr>
<td>03 04</td>
<td>CONVID is for a conversation that is not basic.</td>
</tr>
<tr>
<td>03 0C</td>
<td>The SYNLEVEL option specifies a value other than 0, 1, or 2.</td>
</tr>
<tr>
<td>03 0C</td>
<td>The SYNLEVEL option requested either 1 or 2, but it was unavailable.</td>
</tr>
<tr>
<td>03 08</td>
<td>A state check occurred.</td>
</tr>
<tr>
<td>04</td>
<td>CONVID is for a session that is not allocated to the task, or that is a relay link.</td>
</tr>
<tr>
<td>05 00 00 00 00 20</td>
<td>PROCLENGTH is outside the range 1–64.</td>
</tr>
<tr>
<td>05 00 00 00 7F FF</td>
<td>The PIPLength value is outside the range 4–763.</td>
</tr>
<tr>
<td>05 00 00 00 7F FF</td>
<td>The 2-byte length field (LL) for one of the PIPs is less than 4.</td>
</tr>
<tr>
<td>05 00 00 00 7F FF</td>
<td>The total of the LLs in PIP data is greater than the PIPLength value.</td>
</tr>
</tbody>
</table>
GDS EXTRACT ATTRIBUTES

Access state information on an APPC basic conversation (assembler-language and C programs only).

GDS EXTRACT ATTRIBUTES CONVID(name) CONVDATA(data-area) RETCODE(data-area)

Description

GDS EXTRACT ATTRIBUTES accesses state information about an APPC basic conversation.

The return code is given in RETCODE (see Table 4). For a list of return code values, see the CICS Distributed Transaction Programming Guide. EXEC CICS conditions are never raised on GDS commands.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed GDS ALLOCATE command, or the token representing the principal session (returned by a previously executed GDS ASSIGN command).

CONVDATA(data-area)

specifies the 24-byte application data area into which conversation-related information is to be moved. A description of the format of the data area is given in the discussion of CONVDATA fields in the CICS Distributed Transaction Programming Guide.

RETCODE(data-area)

specifies the 6-byte application data area into which return code information is to be moved.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

ALLOCATED
CONFFREE
CONFRECEIVE
CONFSEND
FREE
PENDFREE
PENDRECEIVE
RECEIVE
ROLLBACK
SEND
SYNCFREE

Table 4. GDS EXTRACT ATTRIBUTES return codes

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is not APPC.</td>
</tr>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is in use by CPI Communications.</td>
</tr>
<tr>
<td>03 01</td>
<td>INVREQ for a DPL server program.</td>
</tr>
<tr>
<td>03 04</td>
<td>CONVID is for a conversation that is not basic.</td>
</tr>
<tr>
<td>04</td>
<td>CONVID is for a session that is not allocated to the task, or that is a relay link.</td>
</tr>
</tbody>
</table>
GDS EXTRACT PROCESS

GDS EXTRACT PROCESS

Retrieve values from an APPC basic conversation (assembler-language and C programs only).

Description

GDS EXTRACT PROCESS retrieves values from an APPC basic conversation. The data retrieved is valid only when the command is issued against an APPC basic principal facility.

The return code is given in RETCODE (see Table 5). For a list of return code values, see the CICS Distributed Transaction Programming Guide. EXEC CICS conditions are never raised on GDS commands.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

CONVID(name)

identifies the conversation the command relates to. The 4-character name identifies the token representing the principal session (returned by a previously executed GDS ASSIGN command).

MAXPROCLEN(data-value)

specifies the length (1–64 characters) of the PROCNAME data area. If MAXPROCLEN is not specified, the buffer is assumed to have 32 bytes.

PROCLENGTH(data-area)

specifies a halfword binary data area that is set to the actual length of the process name.

PIPLIST(pointer-ref)

specifies the pointer reference that is to be set to the address of the PIPLIST received by a GDS EXTRACT PROCESS command. A zero setting indicates that no PIPLIST was received.

PIPLENGTH(data-area)

specifies a halfword binary data area that is to receive the length of the PIPLIST received by a GDS EXTRACT PROCESS command.

SYNCELEVEL(data-area)

specifies a halfword binary data area that is set to indicate the synchronization level in effect for the current conversation. The possible values are:

 0 None
 1 Confirm
 2 Syncpoint

Table 5. GDS EXTRACT PROCESS return codes

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is not APPC.</td>
</tr>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is in use by CPI Communications.</td>
</tr>
<tr>
<td>05 00 00 00 00 20</td>
<td>PROCLENGTH value returned is greater than MAXPROCLEN value.</td>
</tr>
</tbody>
</table>
GDS FREE

Return an APPC session to CICS (assembler-language and C programs only).

Description

GDS FREE returns the session to CICS. The issue of this command is valid only when the conversation is finished, that is, the conversation state is FREE.

The return code is given in RETCODE (see Table 6). For a list of return code values, see the CICS Distributed Transaction Programming Guide. EXEC CICS conditions are never raised on GDS commands.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

CONVDATA(data-area)

specifies the 24-byte application data area into which conversation-related information is to be moved. A description of the format of the data area is given in the discussion of CONVDATA fields in the CICS Distributed Transaction Programming Guide.

CONVID(name)

identifies the conversation to be freed. The 4-character name identifies either the token returned by a previously executed GDS ALLOCATE command, or the token representing the principal session (returned by a previously executed GDS ASSIGN command).

RETCODE(data-area)

specifies the 6-byte application data area into which return code information is to be moved.

STATE(cvda)

gets the state of the current conversation. The STATE on a FREE command returns a cvda code of 00 if there is no longer an active conversation. The other output cvda values are:

<table>
<thead>
<tr>
<th>ALLOCATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFFREE</td>
</tr>
<tr>
<td>CONFRECEIVE</td>
</tr>
<tr>
<td>CONFSEND</td>
</tr>
<tr>
<td>FREE</td>
</tr>
<tr>
<td>PENDFREE</td>
</tr>
<tr>
<td>PENDRECEIVE</td>
</tr>
<tr>
<td>RECEIVE</td>
</tr>
<tr>
<td>ROLLSACK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is not APPC.</td>
</tr>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is in use by CPI Communications.</td>
</tr>
<tr>
<td>03 04</td>
<td>CONVID is for a conversation that is not basic.</td>
</tr>
<tr>
<td>03 08</td>
<td>A state check has occurred.</td>
</tr>
<tr>
<td>04</td>
<td>CONVID is for a session that is not allocated to the task, or that is a relay link.</td>
</tr>
</tbody>
</table>
GDS ISSUE ABEND

GDS ISSUE ABEND

Terminate APPC basic conversation abnormally (assembler-language and C programs only).

```
GDS ISSUE ABEND—CONVID(name)—CONVDATA(data-area)—RETCODE(data-area)---STATE(cvda)
```

Description

GDS ISSUE ABEND causes an APPC basic conversation to end immediately, regardless of the conversation state. The partner transaction is informed.

The return code is given in RETCODE (see Table 7). For a list of return code values, see the CICS Distributed Transaction Programming Guide. EXEC CICS conditions are never raised on GDS commands.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

CONVDATA(data-area)

specifies the 24-byte application data area into which conversation-related information is to be moved. A description of the format of the data area is given in the discussion of CONVDATA fields in the CICS Distributed Transaction Programming Guide.

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed GDS ALLOCATE command, or the token representing the principal session (returned by a previously executed GDS ASSIGN command).

RETCODE(data-area)

specifies the 6-byte application data area into which return code information is to be moved.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSendTime
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is not APPC.</td>
</tr>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is in use by CPI Communications.</td>
</tr>
<tr>
<td>03 04</td>
<td>CONVID is for a conversation that is not basic.</td>
</tr>
<tr>
<td>03 08</td>
<td>A state check has occurred.</td>
</tr>
<tr>
<td>04</td>
<td>CONVID is for a session that is not allocated to the task, or that is a relay link.</td>
</tr>
</tbody>
</table>
GDS ISSUE CONFIRMATION

Issue synchronization request on APPC basic conversation (assembler-language and C programs only).

Description

GDS ISSUE CONFIRMATION issues a synchronization request in response to a GDS SEND CONFIRM issued by a partner transaction.

The return code is given in RETCODE (see Table 8). For a list of return code values, see the CICS Distributed Transaction Programming Guide. EXEC CICS conditions are never raised on GDS commands.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

CONVDATA(data-area)

specifies the 24-byte application data area into which conversation-related information is to be moved. A description of the format of the data area is given in the discussion of CONVDATA fields in the CICS Distributed Transaction Programming Guide.

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed GDS ALLOCATE command, or the token representing the principal session (returned by a previously executed GDS ASSIGN command).

RETCODE(data-area)

specifies the 6-byte application data area into which return code information is to be moved.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is not APPC.</td>
</tr>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is in use by CPI Communications.</td>
</tr>
<tr>
<td>03 04</td>
<td>CONVID is for a conversation that is not basic.</td>
</tr>
<tr>
<td>03 08</td>
<td>A state check has occurred.</td>
</tr>
<tr>
<td>03 14</td>
<td>The command was issued for a sync level 0 conversation.</td>
</tr>
<tr>
<td>04</td>
<td>CONVID is for a session that is not allocated to the task, or that is a relay link.</td>
</tr>
</tbody>
</table>

Table 8. GDS ISSUE CONFIRMATION return codes
GDS ISSUE ERROR

Inform APPC basic conversation partner of error (assembler-language and C programs only).

```
GDS ISSUE ERROR─ CONVID(name)─ CONVDATA(data-area)─ RETCODE(data-area) ─ STATE(cvda) ─
```

Description

GDS ISSUE ERROR informs the conversation partner that there is an error.

The return code is given in RETCODE, see below. For a list of return code values, see the CICS Distributed Transaction Programming Guide. EXEC CICS conditions are never raised on GDS commands.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

CONVDATA(data-area)

specifies the 24-byte application data area into which conversation-related information is to be moved. A description of the format of the data area is given in the discussion of CONVDATA fields in the CICS Distributed Transaction Programming Guide.

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed GDS ALLOCATE command, or the token representing the principal session (returned by a previously executed GDS ASSIGN command).

RETCODE(data-area)

specifies the 6-byte application data area into which return code information is to be moved.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE

Table 9. GDS ISSUE ERROR return codes

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is not APPC.</td>
</tr>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is in use by CPI Communications.</td>
</tr>
<tr>
<td>03 04</td>
<td>CONVID is for a conversation that is not basic.</td>
</tr>
<tr>
<td>03 08</td>
<td>A state check has occurred.</td>
</tr>
<tr>
<td>04</td>
<td>CONVID is for a session that is not allocated to task, or that is a relay link.</td>
</tr>
</tbody>
</table>
GDS ISSUE PREPARE

Issue first flow of syncpoint request on APPC basic conversation (assembler-language and C programs only).

Description

GDS ISSUE PREPARE issues first flow of syncpoint request.

The return code is given in RETCODE (see Table 10). For a list of return code values, see the *CICS Distributed Transaction Programming Guide*. EXEC CICS conditions are never raised on GDS commands.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

CONVDATA(data-area)

specifies the 24-byte application data area into which conversation-related information is to be moved. A description of the format of the data area is given in the discussion of CONVDATA fields in the *CICS Distributed Transaction Programming Guide*.

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed GDS ALLOCATE command, or the token representing the principal session (returned by a previously executed GDS ASSIGN command).

RETCODE(data-area)

specifies the 6-byte application data area into which return code information is to be moved.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNFREE
- SYNCRECEIVE

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is not APPC.</td>
</tr>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is in use by CPI Communications.</td>
</tr>
<tr>
<td>03 04</td>
<td>CONVID is for a conversation that is not basic.</td>
</tr>
<tr>
<td>03 0C</td>
<td>The command was issued on a conversation that is not sync-level 2.</td>
</tr>
<tr>
<td>03 24</td>
<td>A state error occurred.</td>
</tr>
<tr>
<td>04</td>
<td>CONVID is for a session that is not allocated to task, or that is a relay link.</td>
</tr>
</tbody>
</table>

SYNCSEND

Table 10. GDS ISSUE PREPARE return codes
GDS ISSUE SIGNAL

Request change of direction from sending transaction APPC basic conversation (assembler-language and C programs only).

![GDS ISSUE SIGNAL—CONVID(name)—CONVDATA(data-area)—RETCODE(data-area)—STATE(cvda)](image)

Description

GDS ISSUE SIGNAL requests a change of direction.

The return code is given in RETCODE (see Table 11). For a list of return code values, see the CICS Distributed Transaction Programming Guide. EXEC CICS conditions are never raised on GDS commands.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

CONVDATA(data-area)

specifies the 24-byte application data area into which conversation-related information is to be moved. A description of the format of the data area is given in the discussion of CONVDATA fields in the CICS Distributed Transaction Programming Guide.

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed GDS ALLOCATE command, or the token representing the principal session (returned by a previously executed GDS ASSIGN command).

RETCODE(data-area)

specifies the 6-byte application data area into which return code information is to be moved.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNCSEND

Table 11. GDS ISSUE SIGNAL return codes

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is not APPC.</td>
</tr>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is in use by CPI Communications.</td>
</tr>
<tr>
<td>03 04</td>
<td>CONVID is for a conversation that is not basic.</td>
</tr>
<tr>
<td>03 08</td>
<td>A state check has occurred.</td>
</tr>
<tr>
<td>04</td>
<td>CONVID is for a session that is not allocated to task, or that is a relay link.</td>
</tr>
</tbody>
</table>
GDS RECEIVE

Receive data on an APPC basic conversation (assembler-language and C programs only).

```
GDS RECEIVE─CONVID(name)─INTO(data-area)─FLENGTH(data-area)─MAXFLENGTH(data-value)─
BUFFER─CONVDATA(data-area)─RETCODE(data-area)─STATE(cvda)─
LLID
```

Description

GDS RECEIVE receives data and indicators from a partner transaction.

The return code is given in RETCODE (see Table 12 on page 132). For a list of return code values, see the CICS Distributed Transaction Programming Guide. EXEC CICS conditions are never raised on GDS commands.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

- **BUFFER** specifies that the length of the data passed to the application program in response to the RECEIVE command is to be restricted only by the length specified in the MAXFLENGTH option, and is not to be affected by GDS structured field boundaries. Control is returned to the application program when this length has been received, or when a synchronization request, change-direction, or end-bracket is received.

- **CONVDATA(data-area)** specifies the 24-byte application data area into which conversation-related information is to be moved. A description of the format of the data area is given in the discussion of CONVDATA fields in the CICS Distributed Transaction Programming Guide.

- **CONVID(name)** identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed GDS ALLOCATE command, or the token representing the principal session (returned by a previously executed GDS ASSIGN command).

- **FLENGTH(data-area)** specifies a fullword binary data area that is set to the length of the data made available to the application program.

- **INTO(data-area)** specifies the application target data area into which data is to be received from the application program connected to the other end of the current conversation. The length of this area must not be less than the value specified in the MAXFLENGTH option.

- **LLID** specifies that the delimiter to be used by CICS to terminate the passing of data to the application program is the end of a GDS structured field, if this occurs before the MAXFLENGTH limit is reached.

- **MAXFLENGTH(data-value)** specifies, as a fullword binary value, either the length of the target data area specified in the INTO option, or the maximum length of data to be addressed by the pointer reference specified in the SET option. The length must not exceed 32767 bytes. CICS does not receive more data than the MAXFLENGTH value allows.

- **RETCODE(data-area)** specifies the 6-byte application data area into which return code information is to be moved.

- **SET(pointer-ref)** specifies the pointer reference to be set to the address of data received from the application program connected to the other end of the current conversation. The pointer reference, unless changed by other commands or statements, is valid until the next RECEIVE (GDS or APPC) command, or the end of the task.

 - If DATALLOCATION(ANY) is associated with the application program, the address of the data can be above or below the 16MB line.

 - If DATALLOCATION(BELOW) is associated with the application program, and the data resides above the 16MB line, the data is copied below the 16MB line, and the address of this copy is returned.

 - If TASKDATAKEY(USER) is specified for the running task, and storage protection is active, the data returned is in a user-key. If TASKDATAKEY(CICS) is specified and storage protection is active, the data returned is in a CICS-key.
GDS RECEIVE

STATE(cvda)
gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNCSEND

Table 12. GDS RECEIVE return codes

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is not APPC.</td>
</tr>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is in use by CPI Communications.</td>
</tr>
<tr>
<td>03 04</td>
<td>CONVID is for a conversation that is not basic.</td>
</tr>
<tr>
<td>03 08</td>
<td>A state check occurred.</td>
</tr>
<tr>
<td>04</td>
<td>CONVID is for a session that is not allocated to the task, or that is a relay link.</td>
</tr>
<tr>
<td>05 00 00 00 7F FF</td>
<td>MAXFLENGTH is outside the range 0 through 32767.</td>
</tr>
</tbody>
</table>
GDS SEND

Send data on an APPC basic conversation (assembler-language and C programs only).

Description

GDS SEND sends data.

The return code is given in RETCODE (see Table 13 on page 134). For a list of return code values, see the CICS Distributed Transaction Programming Guide. EXEC CICS conditions are never raised on GDS commands.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

CONFIRM

allows an application working at synchronization level 1 or 2 to synchronize its processing with that of a process in a remote system. The actions taken to synchronize processing are defined by the application programs involved. The CONFIRM option causes RQD2 to be added to the data already sent, and forces a WAIT. On receipt of the indicator, the remote process takes the agreed actions and then sends a response. When the WAIT completes, CDBERR is set to X’00’ if the appropriate response has been received.

CONVDATA(data-area)

specifies the 24-byte application data area into which conversation-related information is to be moved. A description of the format of the data area is given in the discussion of CONVDATA fields in the CICS Distributed Transaction Programming Guide.

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed GDS ALLOCATE command, or the token representing the principal session (returned by a previously executed GDS ASSIGN command).

FLENGTH(data-value)

specifies the length (as a fullword binary value in the range 1–32767) of the data specified in the FROM option.

FROM(data-area)

specifies the data that is to be sent.

INVITE

allows an application program to add a change-direction indicator to data already sent to a process in a connected APPC system. Control data is not transmitted by CICS until the subsequent execution of a WAIT or a SYNCPOINT command, unless CONFIRM or WAIT is also coded on the GDS SEND INVITE command.

LAST

allows an application program to add CEB to data already sent to a process in a connected APPC system. CEB is not transmitted by CICS until the subsequent execution of a WAIT or a SYNCPOINT command, unless CONFIRM or WAIT is also coded on the GDS SEND LAST command. Note that if one of these commands fails because of a conversation-related error, the conversation remains in bracket. In such a case, the application program should execute a GDS RECEIVE command. However, GDS SEND LAST WAIT (with no data) always causes the conversation to be deallocated.

RETCODE(data-area)

specifies the 6-byte application data area into which return code information is to be moved.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

ALLOCATED
CONFFREE
CONFRECEIVE
CONFSEND
FREE
PENDFREE
PENDRECEIVE
RECEIVE
ROLLBACK
SEND
SYNCFREE
SYNCRECEIVE
SYNCSEND
GDS SEND

WAIT

ensures that all data and indicators so far sent on a conversation are erased from the partner transaction.

If the WAIT option is not used, data from successive SEND commands is accumulated by CICS, together with any indicators, in an internal buffer. If the buffer becomes full, most of the accumulated data is transmitted to the remote system, but the accumulated indicators are not. Transmission of the accumulated data plus the indicators is forced by the WAIT or CONFIRM options of the GDS SEND command, or by a GDS WAIT command.

Table 13. GDS SEND return codes

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is not APPC.</td>
</tr>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is in use by CPI Communications.</td>
</tr>
<tr>
<td>03 04</td>
<td>CONVID is for a conversation that is not basic.</td>
</tr>
<tr>
<td>03 08</td>
<td>A state check has occurred.</td>
</tr>
<tr>
<td>03 14</td>
<td>The CONFIRM option has been used on a sync level 0 conversation.</td>
</tr>
<tr>
<td>03 10</td>
<td>LL error (incorrect or incomplete).</td>
</tr>
<tr>
<td>04</td>
<td>CONVID is for a session that is not allocated to the task, or that is a relay link.</td>
</tr>
<tr>
<td>05 00 00 00 7F FF</td>
<td>The FLENGTH value is outside the range 0 through 32767.</td>
</tr>
</tbody>
</table>
GDS WAIT

Ensure accumulated data transmitted on an APPC conversation (assembler-language and C programs only).

```
GDS WAIT—CONVID(name)—CONVDATA(data-area)—RETCODE(data-area)─STATE(cvda)─
```

Description

GDS WAIT ensures that the accumulated data has been sent.

The return code is given in RETCODE (see Table 14). For a list of return code values, see the CICS Distributed Transaction Programming Guide. EXEC CICS conditions are never raised on GDS commands.

Options

In general, the arguments can be replaced by absolute or relocatable assembler-language expressions.

CONVDATA(data-area)

specifies the 24-byte application data area into which conversation-related information is to be moved. A description of the format of the data area is given in the discussion of CONVDATA fields in the CICS Distributed Transaction Programming Guide.

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed GDS ALLOCATE command, or the token representing the principal session (returned by a previously executed GDS ASSIGN command).

RETCODE(data-area)

specifies the 6-byte application data area into which return code information is to be moved.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE

Table 14. GDS WAIT return codes

<table>
<thead>
<tr>
<th>RETCODE (hexadecimal)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is not APPC.</td>
</tr>
<tr>
<td>03 00</td>
<td>CONVID is for a session that is in use by CPI Communications.</td>
</tr>
<tr>
<td>03 04</td>
<td>CONVID is for a conversation that is not basic.</td>
</tr>
<tr>
<td>03 08</td>
<td>A state check has occurred.</td>
</tr>
<tr>
<td>04</td>
<td>CONVID is for a session that is not allocated to task, or that is a relay link.</td>
</tr>
</tbody>
</table>
GET COUNTER

Get the next number from the named counter.

```
GET COUNTER(name) POOL(name) VALUE(data-area) INCREMENT(data-value) REDUCE WRAP
```  

Conditions: INVREQ, LENGERR, SUPPRESSED

```
GET DCOUNTER(name) POOL(name) VALUE(data-area) INCREMENT(data-area) REDUCE WRAP
```  

Conditions: INVREQ, SUPPRESSED

Description

These counter commands obtain, from the named counter server, the current number from the named counter in the specified pool, and updates the current number by the default, or by a specified, increment. The default increment is 1. COUNTER operates with fullword signed binary values, and DCOUNTER operates with doubleword unsigned binary values.

You can use the COMPAREMAX and COMPAREMIN options to obtain a number only if it falls within a specified range, or is above or below a specified value.

For information about specifying fullword and doubleword variables on these named counter commands, see “Argument values” on page 2.

Options

COMPAREMAX(data-value) specifies, as a fullword signed binary value (doubleword unsigned binary value for DCOUNTER), a value to be compared with the named counter's current value, and makes the result of the GET command conditional on the comparison:

- If the current value to be assigned is less than, or equal to, the value specified on the COMPAREMAX parameter, the current value is returned, with response normal.
- If the current value is greater than the specified value, CICS returns an exception condition.

The value you specify on the COMPAREMIN parameter can be less than the value on the COMPAREMIN parameter, in which case the current value is considered to be in range if it satisfies the COMPAREMIN or the COMPAREMAX comparison. In the normal case where the COMPAREMIN value is less than the COMPAREMAX value, the current value must satisfy both comparisons (that is, it must be greater than, or equal to, the COMPAREMIN value, and be less than, or equal to the COMPAREMAX value).

COMPAREMIN(data-value) specifies, as a fullword signed binary value (doubleword unsigned binary value for DCOUNTER), a value to be compared with the named counter's current value, and makes the result of the GET command conditional on the comparison:

- If the current value to be assigned is equal to, or greater than, the value specified on the COMPAREMIN parameter, the CICS returns the current value, with response normal.
- If the current value is less than the specified value, CICS returns an exception condition.

Note: The value you specify on the COMPAREMIN parameter can be greater than the value on the COMPAREMAX parameter. See the COMPAREMAX parameter for the effect of this.

COUNTER(name) specifies the name of the fullword counter from which the current number is to be assigned to the application program. The name can be up to 16 alphanumeric characters. If name is a variable that contains a name...
that is less than 16 characters, the name must be padded with trailing blanks.

DCOUNTER(name)

specifies the name of the doubleword counter from which the current number is to be assigned to the application program. The name can be up to 16 alphanumeric characters. If name is a variable that contains a name that is less than 16 characters, the name must be padded with trailing blanks.

INCREMENT(data-value)

specifies, as a fullword signed binary value (doubleword unsigned binary value for DCOUNTER), an increment by which the named counter is to be updated, instead of the default value of 1. The counter is incremented after the current number has been assigned.

Specifying an increment to override the default increment of 1 enables the application program to obtain exclusive use of more than 1 number for each call. For example, if you want to obtain exclusive use of a block of 20 numbers, specify **INCREMENT**(20).

See the description of the REDUCE and WRAP options for the effect of specifying an increment when the counter is at, or near, the maximum value.

POOL(poolname)

specifies an 8-character string to be used as a pool selection parameter to select the pool in which the named counter resides. The string can be a logical pool name, or the actual pool name.

Valid characters for the pool selector string are A through Z, 0 through 9, $ @ # and _ (underscore). If name is a variable that contains a name that is less than 8 characters, the name must be padded with trailing blanks.

This parameter is optional. If you omit the name of the pool, a pool selector value of 8 blanks is assumed.

If there is no matching entry in the DFHNCOPT options table, CICS uses the name specified on the NCPLDFT system initialization parameter, which specifies the default named counter pool.

For information about generating a named counter options table using the DFHNC0 macro, see the CICS System Definition Guide.

REDUCE

specifies that you want the named counter server to reduce the specified increment if the range of numbers remaining to be assigned is too small.

The range of numbers is too small if the difference between the current value and the maximum value plus 1 is less than the specified increment, in which case:

- If you specify **REDUCE**, the **INCREMENT** parameter value is reduced and the **GET** request succeeds. In this case, the **GET** command has reserved a range of numbers less than that specified by the **INCREMENT** parameter, and the current value is updated to the maximum value plus 1.
- If you do not specify the **REDUCE** option, the result depends on whether or not you specify the **WRAP** option. If the **REDUCE** and **WRAP** options are both omitted, the request fails with the counter-at-limit error (SUPPRESSED, RESP2=101), but the current number is not changed. For example, if a request specifies an **INCREMENT** parameter value of 15 when the current number is 199990 and the counter maximum number is defined as 199999, the **GET** command fails because updating the counter by the specified increment would cause the current number to exceed 200000.

See the **WRAP** parameter description for information about the effect of **WRAP** when **REDUCE** is omitted.

VALUE(data-area)

specifies the data area (fullword signed data-area for COUNTER, and doubleword unsigned data-area for DCOUNTER) into which CICS returns the current number, obtained from the named counter server for the specified pool.

WRAP

specifies that you want the named counter server automatically to perform a rewind of the named counter if it is in a counter-at-limit condition, avoiding the error condition that would otherwise result.

If it finds that the named counter is in the counter-at-limit condition, or that the increment specified without the **REDUCE** option would cause the condition, the server:

- Resets the current value of the named counter equal to the minimum value defined for the counter
- Returns the new current value to the application program, with **DFHRESP**(NORMAL)
- Updates the current value by the required increment ready for the next request.

If you omit the **WRAP** option, and the counter-at-limit condition has been reached, CICS returns **SUPPRESSED**, **RESP2**=101.

Conditions

INVREQ

RESP2 values:

- **201** Named counter not found.
- **301** The server has reported an error code that is not understood by the named counter interface. Generally, this is not possible unless the interface load module, DFHNCF, is at a lower maintenance or release level than the server itself.
- **303** An unexpected error, such as structure failure or loss of connectivity, has occurred on a macro used to access the coupling facility. Further
The pool selection parameter specified in the program cannot be resolved to a valid server name using the current options table.

The interface is unable to establish a connection to the server for the selected named counter pool. Further information can be found in an AXM services message (AXMSC\textit{nnnn}) in the CICS job log.

An abend occurred during server processing of a request. Further information can be found in a message in the CICS job log and the server job log.

The DFHNCOPT options table module, required for resolving a pool name, could not be loaded.

During processing of the options table, the named counter interface encountered an unknown entry format. Either the options table is not correctly generated, or the DFHNCIF interface load module is not at the same release level as the options table.

An options table entry matching the given pool name specified a user exit program, but the user exit program is not link-edited with the options table and cannot be loaded.

The POOL parameter contains invalid characters or embedded spaces.

The COUNTER parameter contains invalid characters or embedded spaces.

The INCREMENT value is invalid. The value specified cannot be greater than the total range of the counter ($\left(\text{maximum value} - \text{minimum value}\right) + 1$).

Default action: terminate the task abnormally.

LENGERR

LENGERR occurs for COUNTER commands only and does not apply to DCOUNTER requests. It occurs when a counter that was defined by a DCOUNTER command has become negative when accessed as a fullword signed binary value (that is, the counter uses more than 31 bits).

In each of the three cases of overflow, the named counter server completes the operation, and returns a warning response to CICS, which CICS returns to your application program as the RESP2 value. The data area contains the low-order 32 bits returned from the named counter server, which could be a negative number.

RESP2 values:

001 The current value that the server has attempted to return in the VALUE data area has overflowed into the high-order (sign) bit (that is, the value returned is negative).
GETMAIN

Get main storage.

```
GETMAIN—SET(ptr-ref)—FLENGTH(data-value)—BELOW
LENGTH(data-value)—INITIMG(data-value)—SHARED—NOSUSPEND

USERDATAKEY—CICSDATAKEY
```

Conditions: LENGERR, NOSTG

Dynamic transaction routing

Using GETMAIN with SHARED could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the *CICS Application Programming Guide* for more information about transaction affinities.

Description

GETMAIN gets a main storage area of the size indicated by the FLENGTH option. (You can also use the LENGTH option, but this is supported for compatibility purposes and you are strongly recommended to use FLENGTH.) The address of the area is returned in the pointer reference supplied in the SET option.

CICS always allocates on double-word boundaries and rounds the requested length up to the nearest double-word multiple. Because there is no default initialization, you must use the INITIMG option if you require the storage to be initialized to a specific bit configuration.

CICS allocates storage from one of six different dynamic storage areas (DSAs):

- The CICS dynamic storage area (CDSA), below the 16MB line
- The user dynamic storage area (UDSA), below the 16MB line
- The shared dynamic storage area (SDSA), below the 16MB line
- The extended CICS dynamic storage area (ECDSA), above the 16MB line
- The extended user dynamic storage area (EUDSA), above the 16MB line
- The extended shared dynamic storage area (ESDSA), above the 16MB line

Note: There are two other dynamic storage areas—the read-only DSA (RDSA) and the extended read-only DSA (ERDSA)—but you cannot GETMAIN storage from these DSAs.

CICS determines whether to obtain the requested storage above or below the 16MB line, from one of the CICS- or user-key DSAs, or from one of the shared DSAs, according to the following options:

- The FLENGTH option with BELOW also specified
- The FLENGTH option alone, in conjunction with the addressing mode of the requesting program
- The LENGTH option
- The SHARED option

The above- or below-the-line allocation is summarized in the following table:

<table>
<thead>
<tr>
<th>Options</th>
<th>Address mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-bit</td>
<td>31-bit</td>
</tr>
<tr>
<td>FLENGTH BELOW</td>
<td>A DSA</td>
</tr>
<tr>
<td>FLENGTH alone</td>
<td>A DSA</td>
</tr>
<tr>
<td>LENGTH</td>
<td>A DSA</td>
</tr>
</tbody>
</table>

CICS decides whether to allocate storage from a CICS-key or user-key DSA, or from a shared DSA, according to the following options:

- The USERDATAKEY option on the GETMAIN command
- The CICSDATAKEY option on the GETMAIN command
- The TASKDATAKEY option on the RDO TRANSACTION resource definition under which the requesting program is running if the USERDATAKEY or CICSDATAKEY option is omitted
- The SHARED option on the GETMAIN command

The data-key option on the GETMAIN command overrides the TASKDATAKEY option on the RDO TRANSACTION resource definition. The effect of the data-key options, without the SHARED option, is summarized in the following table:
The effect of the SHARED option is summarized in the following table:

<table>
<thead>
<tr>
<th>Without SHARED option</th>
<th>With SHARED option</th>
</tr>
</thead>
<tbody>
<tr>
<td>No data-key option</td>
<td>No data-key option</td>
</tr>
<tr>
<td>USERDATAKEY specified</td>
<td>USERDATAKEY specified</td>
</tr>
<tr>
<td>CICSDATAKEY specified</td>
<td>CICSDATAKEY specified</td>
</tr>
<tr>
<td>Determined by TASKDATAKEY on transaction definition</td>
<td>Determined by TASKDATAKEY on transaction definition</td>
</tr>
<tr>
<td>User-key storage (from UDSA or EUDSA)</td>
<td>User-key storage (from SDSA or ESDSA)</td>
</tr>
<tr>
<td>CICS-key storage (from CDSA or ECDSA)</td>
<td>CICS-key storage (from CDSA or ECDSA)</td>
</tr>
</tbody>
</table>

The storage that a task gets is available until it is released with a FREEMAIN command. For an area obtained without the SHARED option, only the task that acquired the storage may release it, and at task end CICS automatically releases such storage not already released. Note that any storage acquired with the SHARED option is accessible by all tasks, including those that are running with transaction isolation.

A SHARED area, on the other hand, is not released at task end and remains until explicitly freed; any task may issue the FREEMAIN. This means that you can use SHARED storage in task-to-task communication.

You cannot, however, use the storage obtained as a TIOA for subsequent terminal operations, because this could cause storage violations.

Specifying CICSDATAKEY ensures that the requesting program obtains CICS-key storage from a CICS DSA, even if TASKDATAKEY(USER) is specified on the RDO TRANSACTION resource definition.

Options

BELOW

specifies that storage is to be obtained below the 16MB line, that is, from the CICS DSA.

CICSDATAKEY

specifies that CICS is to allocate storage from one of the CICS-key DSAs (the CDSA or ECDSA), overriding the TASKDATAKEY option specified on the transaction resource definition. If you do not specify the data key, CICS determines the type of storage (CICS-key or user-key) according to the TASKDATAKEY option on the transaction resource definition.

FLENGTH(data-value)

specifies the number of bytes of storage required, in fullword binary format.

The maximum length that you can specify is the value of the corresponding DSA limit parameter, either DSALIMIT or EDSALIMIT. These are the system initialization parameters that define the overall storage limit within which CICS can allocate and manage the individual DSAs.

If the length requested is bigger than the DSALIMIT or EDSALIMIT value, the LENGERR condition occurs. If it is not bigger than these limits, but is more than is available, NOSTG occurs.

INITIMG(data-value)

specifies an optional 1-byte initialization value. If you specify INITIMG, CICS sets every byte of the acquired storage to the bit string you provide. Otherwise, CICS does not initialize the storage. In COBOL programs only, you must use a data area rather than a data value to define the initialization bit string.

LENGTH(data-value)

specifies the number of bytes (unsigned halfword binary value) of storage required. LENGTH implies storage from below the 16MB line and has an upper limit of 65520 bytes. If you want storage above the 16MB line or a larger area, use FLENGTH.

If LENGTH is equal to zero, LENGERR occurs. If it is greater than the amount of storage available, NOSTG occurs.

NOSUSPEND

prevents CICS from suspending the task if no storage is available, and causes it to issue the NOSTG condition instead.

SET(ptr-ref)

sets the pointer reference to the address of the acquired main storage. The pointer is set to the first byte of the storage area.

SHARED

prevents the automatic release of storage obtained by a GETMAIN command at the end of the task that requested it. This enables task-to-task communication. An area obtained with SHARED is not released until a corresponding FREEMAIN is issued, whether by the requesting task or some other task.

Be aware that if a task abends, any shared storage acquired is not automatically released.
USERDATAKEY
specifies that CICS is to allocate storage from one of the user-key DSAs (the UDSA, SDSA, EUDSA, or ESDSA), overriding the TASKDATAKEY option specified on the transaction resource definition. If you do not specify the data key, CICS determines the type of storage (CICS-key or user-key) according to the TASKDATAKEY option on the transaction resource definition.

Conditions

LENGERR
RESP2 values:

1 The FLENGTH value is less than 1 or greater than the length of the target storage area from which the request is to be satisfied. See the discussion about DSAs on page 139.

also occurs if the LENGTH value is zero.

Default action: terminate the task abnormally.

NOSTG
RESP2 values:

2 The storage requested is more than is currently available in the target DSA. See the discussion about DSAs on page 139.

Default action: ignore the condition. An active HANDLE CONDITION NOSTG also raises this condition.

Examples

The following example shows how to get a 1024-byte area from user-key storage below the 16MB line (assuming that TASKDATAKEY(USER) is specified on the RDO TRANSACTION resource definition), and initialize it to spaces:

```
EXEC CICS GETMAIN SET(PTR)
    FLENGTH(1024)
    BELOW
    INITIMG(BLANK)
```

You must define BLANK in your program as the character representing a space.

The following example shows how to get a 2048-byte area from CICS-key storage above the 16MB line (regardless of the TASKDATAKEY option specified on the transaction resource definition), and initialize it to spaces:

```
EXEC CICS GETMAIN SET(PTR)
    FLENGTH(2048)
    INITIMG(BLANK)
    CICSDATAKEY
```
HANDLE ABEND

Handle an abnormal termination exit.

\[
\text{HANDLE ABEND} \quad \rightarrow \text{CANCEL} \quad \rightarrow \text{PROGRAM(name)} \quad \rightarrow \text{LABEL(label)} \quad \rightarrow \text{RESET}
\]

Conditions: NOTAUTH, PGMIDERR (PROGRAM only)

Description

HANDLE ABEND is used to activate, cancel, or reactivate an exit for abnormal termination processing. You can suspend the command by means of the PUSH HANDLE and POP HANDLE commands as described in the *CICS Application Programming Guide*.

When a task terminates abnormally, CICS searches for an active abend exit, starting at the logical level of the application program in which the abend occurred, and proceeding to successively higher levels. The first active abend exit found, if any, is given control.

The HANDLE ABEND command cannot intercept abends that are issued with the CANCEL option. Some internal abends generated by CICS are issued with the CANCEL option, for example the ASPx or APSJ abend codes.

When the label specified in a HANDLE ABEND LABEL command receives control, the registers are set as follows:

COBOL: Control returns to the HANDLE ABEND command with the registers restored; COBOL GO TO statement is then executed.

ASM: R15 - Abend label.
R0-14 - Contents at the time of last CICS service request.

If LABEL is specified, the addressing mode and execution key used are those of the program that issued the HANDLE ABEND command.

If PROGRAM is specified, the addressing mode is defined by the way the program is link-edited and the execution key is specified by the EXECKEY option on the program’s resource definition.

If a COMMAREA has been established, it will be passed to the specified PROGRAM.

Options

CANCEL

specifies that a previously established exit at the logical level of the application program in control is to be canceled.

LABEL(label)

specifies the program label to which control branches if abnormal termination occurs.

This option cannot be used for C or PL/I application programs.

PROGRAM(name)

specifies the name of the program to which control is to be passed if the task is terminated abnormally. If this program has not already been defined, the program will be autoinstalled in the event of the abend condition being raised.

The program named in this option should always terminate with an abend, except when handling abends generated as a result of application program logic.

RESET

specifies that an exit canceled by a HANDLE ABEND CANCEL command, or by CICS, is to be reactivated.

This option is usually issued by an abnormal termination exit routine.

Conditions

NOTAUTH

occurs when a resource security check has failed on PROGRAM(name).

Default action: terminate the task abnormally.
HANDLE ABEND

PGMIDERR
 RESP2 values:
 1 The program has no entry in the PPT and autoinstall for programs is not active.
 2 The program is disabled.
 9 The installed program definition is for a remote program.

 Default action: terminate the task abnormally.

Examples
The following example shows how to establish a program as an exit:

```
EXEC CICS HANDLE ABEND
   PROGRAM('EXITPGM')
```
HANDLE AID

Handle attention identifiers (AIDs).

Condition: INVREQ

Description

HANDLE AID is used to specify the label to which control is to be passed when an AID is received from a display device. Control is passed after the input command is completed; that is, after any data received in addition to the AID has been passed to the application program.

To cause an AID to be ignored, issue a HANDLE AID command that specifies the associated option without a label. This deactivates the effect of that option in any previously-issued HANDLE AID command.

If no HANDLE AIDs are in effect, that is none have been issued or all have been canceled, control returns to the application program at the instruction immediately following the input command. Look in EIBAID to determine which key was pressed.

No more than 16 options are allowed in the same command.

The C language does not support HANDLE AID.

The options that can be specified are:

- ANYKEY (any PA key, any PF key, or the CLEAR key, but not ENTER)
- CLEAR (for the key of that name)
- CLRPARTN (for the key of that name)
- ENTER (for the key of that name)
- LIGHTPEN (for a light-pen attention)
- OPERID (for the operator identification card reader, the magnetic slot reader (MSR), or the extended MSR (MSRE))
- PA1, PA2, or PA3 (any of the program access keys)
- PF1 through PF24 (any of the program function keys)
- TRIGGER (for a trigger field attention)

If a task is initiated from a terminal by means of an AID, the first RECEIVE command in the task does not read from the terminal but copies only the input buffer (even if the length of the data is zero) so that control may be passed by means of a HANDLE AID command for that AID.

For the standard attention identifier list (DFHAID), and the standard attribute and printer control character list (DFHBMSCA), see Appendix J, “BMS-related constants” on page 421.

The execution key that the label receives control in, is the execution key that the program was running in when the HANDLE AID command was issued.

A print key specified by the system PRINT initialization parameter takes precedence over a HANDLE AID command.
Conditions

INVREQ

RESP2 values:

200 The command was issued by a distributed program link server application.

Default action: terminate the task abnormally.

Examples

The following example shows a HANDLE AID command that specifies one label for the PA1 key; and a second label for CLEAR, PA2, PA3, and all the PF keys except PF10. If a PF10 AID is received or ENTER is pressed, control returns to the application program at the instruction immediately following the input command.

```
EXEC CICS HANDLE AID PA1(LAB1)
ANYKEY(LAB2) PF10
```
HANDLE CONDITION

Handle conditions.

Description

You use HANDLE CONDITION to specify the label to which control is to be passed if a condition occurs. You must include the name of the condition and, optionally, a label to which control is to be passed if the condition occurs.

If you omit “label”, any HANDLE CONDITION command for the condition is deactivated, and the default action is taken if the condition occurs. This is independent of the setting of the generalized ERROR condition.

You must ensure that the HANDLE CONDITION command is executed before the command that may give rise to the associated condition.

You cannot include more than sixteen conditions in the same command; the conditions should be separated by at least one space. You must specify additional conditions in further HANDLE CONDITION commands.

If a condition occurs that is not specified in a HANDLE CONDITION or IGNORE CONDITION command, the default action is taken. If, however, the default action for a condition not specified in a HANDLE CONDITION or IGNORE CONDITION command terminates the task abnormally, and the condition ERROR has been specified, the action for ERROR is taken.

The execution key that the label receives control in, is the execution key that the program was running in when the HANDLE CONDITION command was issued.

Scope: The HANDLE CONDITION command for a given condition applies only to the program in which it is specified. The HANDLE CONDITION command:

- Remains active while the program is being executed, or until:
 - An IGNORE CONDITION command for the same condition is encountered, in which case the HANDLE CONDITION command is overridden
 - Another HANDLE CONDITION command for the same condition is encountered, in which case the new command overrides the previous one.

- A LINK command is executed to call another CICS program. The HANDLE CONDITION options are not inherited by the linked-to program.

- Is temporarily deactivated by the NOHANDLE or RESP option on a command.

Language considerations: In an assembler-language application program, if a HANDLE CONDITION and the command that causes the condition are at the same logical level, the registers are restored to their values in the application program at the point where the command that caused the condition was issued. If, however, the command that causes a condition occurs at a lower logical level, the registers are restored to their current values saved in DFHEISTG at the HANDLE CONDITION level. The addressing mode is set to that in effect at the point where the HANDLE CONDITION command is issued.

In a PL/I application program, a branch to a label in an inactive procedure or in an inactive begin block, caused by a condition, produces unpredictable results.

The C language does not support HANDLE CONDITION.

Options

condition(label)

specifies the name of the condition; “label” specifies the location within the program to be branched to if the condition occurs.

For more information about the conditions, see Appendix A, “EXEC interface block” on page 387.

Examples

The following example shows you how to handle conditions, such as DUPREC, LENGERR, and so on, that can occur when you use a WRITE command to add a record to a data set.

Suppose that you want DUPREC to be handled as a special case; that you want default action (that is, to terminate the task abnormally) to be taken for LENGERR; and that you want all other conditions to be handled by the error routine ERRHANDL. You would code:
EXEC CICS HANDLE CONDITION
 ERROR(ERRHANDL)
 DUPREC(DUPRTN) LENGERR
IGNORE CONDITION

Ignore conditions.

Description

IGNORE CONDITION is not supported for C programs.

For information about the conditions, see Appendix A, “EXEC interface block” on page 387.

You use IGNORE CONDITION to specify that no action is to be taken if a condition occurs (that is, control returns to the instruction following the command that has failed to execute, and the EIB is set). Execution of a command could result in several conditions being raised. CICS checks these in a predetermined order and only the first one that is not ignored (by your IGNORE CONDITION command) is passed to your application program.

The IGNORE CONDITION command for a given condition applies only to the program in which it is specified, and it remains active while the program is being executed, or until a HANDLE CONDITION command for the same condition is encountered, in which case the IGNORE CONDITION command is overridden.

You cannot include more than sixteen conditions in the same command; the conditions must be separated by at least one space. You may specify additional conditions in further IGNORE CONDITION commands.

Options

condition
 specifies the name of the condition to be ignored.
ISSUE ABEND

Abend the mapped conversation with an APPC partner.

ISSUE ABEND

CONVID(name) STATE(cvda)

Conditions: INVREQ, NOTALLOC, TERMERR

Description

ISSUE ABEND abnormally ends the conversation. The partner transaction sees the TERMERR condition.

Options

CONVID(name)

identifies the conversation to be abended. The 4-character name identifies either the symbolic identifier returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the symbolic identifier representing the principal facility (returned by a previously executed ASSIGN command).

For compatibility with earlier releases, SESSION is accepted as a synonym for CONVID. New programs should use CONVID.

If both CONVID and SESSION are omitted, the principal facility is assumed.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNCSEND

Conditions

INVREQ

RESP2 values:

- 200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

also occurs (RESP2 not set) in any of the following situations:

- ISSUE ABEND is used on any conversation other than an EXEC CICS APPC mapped conversation.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the specified CONVID value relates to a conversation that is not owned by the application.

Default action: terminate the task abnormally.

TERMERR

occurs for a session-related error. Any action on that conversation other than a FREE command causes an ATCV abend.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.
ISSUE ABORT

End processing of a data set abnormally.

Description

ISSUE ABORT ends communication with a data set in an outboard controller, or the selected medium, abnormally. The data set specified in the DESTID option is deselected abnormally. The options CONSOLE, PRINT, CARD, and WPMEDIA1–4 are alternatives to DESTID and DESTIDLENG.

Options

CARD
specifies that the output medium is a card reader or card punch device. This option is not valid with DESTID and DESTIDLENG.

CONSOLE
specifies that the output medium is that provided for messages to the operator. This option is not valid with DESTID and DESTIDLENG. This refers to a programmable subsystem such as the IBM 3790 data communication system. It does not refer to a CICS or system console.

DESTID(data-value)
specifies the name (1–8 characters) of the data set in the outboard destination.

DESTIDLENG(data-value)
specifies the length (halfword binary value) of the name specified in the DESTID option.

PRINT
specifies that the output medium is a printer.

SUBADDR(data-value)
specifies the medium subaddress as a halfword binary value (in the range 0 through 15) which allows media of the same type, for example, "printer 1" or "printer 2", to be defined. Value 15 means a medium of any type. The default is zero.

VOLUME(data-value)
specifies the name (1–6 characters) of a diskette in an outboard destination that contains the data set specified in the DESTID option.

VOLUMELENG(data-value)
specifies the length (halfword binary value) of the name specified in the VOLUME option.

WPMEDIA1 through WPMEDIA4
specifies that, for each specific LUTYPE4 device, a word-processing medium is defined to relate to a specific input/output device.

Conditions

FUNCERR
occurs if there is an error during execution of the command. Destination selection is unaffected and other commands for the same destination may be successful.

Default action: terminate the task abnormally.

INVREQ
RESP2 values:

200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

Default action: terminate the task abnormally.
SELRNERR
occurs if there is an error during destination selection.
The destination is not selected and other commands for
the same destination are unlikely to be successful.
Default action: terminate the task abnormally.

UNEXPIN
occurs when some unexpected or unrecognized
information is received from the outboard controller.
Default action: terminate the task abnormally.
ISSUE ADD

Add a record to a data set.

Description

ISSUE ADD adds records to a sequential or keyed direct data set in an outboard controller. The FROM option is used to specify the data to be written, and the LENGTH option specifies its length.

The RIDFLD option is only needed with this command when it applies to a DPCX/DXAM data set. In this case, it specifies the relative record number of the record to be added. When RIDFLD is used, NUMREC must be 1 (the default).

Options

- **DEFRESP**
 - specifies that all terminal control commands issued as a result of the ISSUE ADD command are to request a definite response from the outboard batch program, irrespective of the specification of message integrity for the CICS task (by the system programmer).

- **DESTID(data-value)**
 - specifies the name (1–8 characters) of the data set in the outboard destination.

- **DESTIDLENG(data-value)**
 - specifies the length (halfword binary value) of the name specified in the DESTID option.

- **FROM(data-area)**
 - specifies the data to be written to the data set.

- **LENGTH(data-value)**
 - specifies the length (halfword binary value) of the data to be written. For a description of a safe upper limit, see "LENGTH options" on page 5.

- **NUMREC(data-value)**
 - for a relative record data set, specifies as a halfword binary value the number of logical records to be added. Records are replaced sequentially starting with the one identified by the RIDFLD option.
 - For an indexed data set, NUMREC cannot be specified because only one record can be added.

- **RIDFLD(data-area)**
 - specifies, for a relative record data set, a 4-character field as the relative record number (starting from zero) of the record. The RRN option is also required.
 - For a keyed direct data set, RIDFLD should specify a key.

- **RRN**
 - specifies that the record identification field specified in the RIDFLD option contains a relative record number. This option is required for a relative record data set.

- **VOLUME(data-value)**
 - specifies the name (1–6 characters) of a diskette in an outboard destination that contains the data set specified in the DESTID option.

- **VOLUMELENG(data-value)**
 - specifies the length (halfword binary value) of the name specified in the VOLUME option.

Conditions

- **FUNCERR**
 - occurs if there is an error during execution of the command. Destination selection is unaffected and other commands for the same destination may be successful.
 - Default action: terminate the task abnormally.
INVREQ
RESP2 values:

200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

SELNERR
occurs if there is an error during destination selection. The destination is not selected and other commands for the same destination are unlikely to be successful.

Default action: terminate the task abnormally.

UNEXPIN
occurs when some unexpected or unrecognized information is received from the outboard controller.

Default action: terminate the task abnormally.
ISSUE CONFIRMATION

ISSUE CONFIRMATION

Issue a positive response to a SEND CONFIRM on an APPC mapped conversation.

```
+-------+------------------+
| ISSUE CONFIRMATION | CONVID(name) |
| STATE(cvda)         |              |
+-------------------+------------+
```

Conditions: INVREQ, NOTALLOC, SIGNAL, TERMERR

Description

ISSUE CONFIRMATION allows an application program to respond positively when the CONFIRM option has been specified on a SEND command executed by a partner transaction.

Options

CONVID(name)

identifies the conversation in which to send the response. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal facility (returned by a previously executed ASSIGN command).

For compatibility with earlier releases, SESSION is accepted as a synonym for CONVID. New programs should use CONVID.

If both CONVID and SESSION are omitted, the principal facility is assumed.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNERCEIVE
- SYNCSEND

Conditions

INVREQ

RESP2 values:

- **200** A distributed program link server application specified the function-shipping session on the CONVID option.

also occurs (RESP2 not set) in any of the following situations:

- ISSUE CONFIRMATION is used on a conversation that is either of the following:
 - Sync level 0
 - Not APPC mapped

Default action: terminate the task abnormally.

NOTALLOC

occurs if the specified CONVID value relates to a conversation that is not owned by the application.

Default action: terminate the task abnormally.

SIGNAL

occurs when an inbound SIGNAL data-flow control command is received from a partner transaction. EIBSIG is always set when an inbound signal is received.

Default action: ignore the condition.

TERMERR

occurs for a session-related error. Any action on that conversation other than a FREE causes an ATCV abend.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.
ISSUE COPY (3270 display)

Copy data from 3270 information display system (BTAM).

```
ISSUE COPY—TERMID(name)─CTLCHAR(data-value)─WAIT─
```

Condition: NOTALLOC, TERMIDERR

Description

ISSUE COPY copies the format and data contained in the buffer of a specified terminal into the buffer of the terminal that started the transaction. Both terminals must be attached to the same remote control unit.

Options

CTLCHAR(data-value)

specifies a 1-byte copy control character (CCC) that defines the copy function. A COBOL user must specify a data area containing this character. If the option is omitted, the contents of the entire buffer (including nulls) are copied.

TERMID(name)

specifies the name (1–4 characters) of the terminal whose buffer is to be copied. The terminal must have been defined in the TCT.

WAIT

specifies that processing of the command must be completed before any subsequent processing is attempted.

If the WAIT option is not specified, control is returned to the application program when processing of the command has started. A subsequent input or output request (terminal control, BMS, or batch data interchange) to the terminal associated with the task causes the application program to wait until the previous request has been completed.

Conditions

NOTALLOC

occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.

TERMIDERR

occurs if the specified terminal identifier cannot be found in the terminal control table (TCT).

Default action: terminate the task abnormally.
ISSUE COPY (3270 logical)

Copy data from 3270 logical unit.

```
ISSUE COPY─TERMD(name)─CTLCHAR(data-value)─WAIT
```

Conditions: LENGERR, NOTALLOC, TERMERR

Description

ISSUE COPY copies the format and data contained in the buffer of a specified terminal into the buffer of the terminal that started the transaction. Both terminals must be attached to the same remote control unit.

Options

CTLCHAR(data-value)

specifies a 1-byte copy control character (CCC) that defines the copy function. A COBOL user must specify a data area containing this character. If the option is omitted, the contents of the entire buffer (including nulls) are copied.

TERMID(name)

specifies the name (1–4 characters) of the terminal whose buffer is to be copied. The terminal must have been defined in the TCT.

WAIT

specifies that processing of the command must be completed before any subsequent processing is attempted.

If the WAIT option is not specified, control is returned to the application program once processing of the command has started. A subsequent input or output request (terminal control, BMS, or batch data interchange) to the terminal associated with the task causes the application program to wait until the previous request has been completed.

Conditions

LENGERR

occurs if an out-of-range value is supplied.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.

TERMERR

occurs for a terminal-related error.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.
ISSUE DISCONNECT (default)

Terminate a session between CICS and a logical unit or terminal.

ISSUE DISCONNECT

Conditions: SIGNAL, TERMERR

Description

ISSUE DISCONNECT terminates sessions between CICS and the following terminals or logical units:

- 3270-display logical unit (LUTYPE2)
- 3270-printer logical unit (LUTYPE3)
- LUTYPE4 logical unit
- 3270 SCS printer logical unit
- System/7
- 2260 or 2265 display station
- 3270 information display system (BTAM or TCAM)
- 3270 logical unit
- 3600 pipeline logical unit
- 3600(3601) logical unit
- 3600(3614) logical unit
- 3630 plant communication system
- 3650 interpreter logical unit
- 3650 host conversational (3270) logical unit
- 3650 host conversational (3653) logical unit
- 3650(3680) host command processor logical unit
- 3735 programmable buffered terminal
- 3740 data entry system
- 3767/3770 interactive logical unit
- 3770 batch logical unit
- 3790 logical units

terminals only. Because of the asynchronous nature of this condition, the application program should check, using SEND CONFIRM or SYNCPOINT, to make sure any errors still outstanding have been resolved before it relinquishes control. If you wish to handle this condition, you must first issue a FREE command to free the session. If you do not do this, an INVREQ condition occurs, plus an ATCV abend if you do not handle this condition.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.

Conditions

For most terminal and logical unit types, ISSUE DISCONNECT raises no conditions. Exceptions are:

SIGNAL

occurs only for an ISSUE DISCONNECT for LUTYPE4, 3600(3601), 3767 interactive, 3770 batch, and 3790 full-function logical units.

It occurs when an inbound SIGNAL data-flow control command is received from a logical unit or session. EIBSIG is always set when an inbound signal is received.

Default action: ignore the condition.

TERMERR

occurs only for an ISSUE DISCONNECT for LUTYPE4 logical units.

It occurs for a terminal-related error, such as a session failure. This condition applies to VTAM-connected...
ISSUE DISCONNECT (LUTYPE6.1)

Disconnect an LUTYPE6.1 logical unit.

```
ISSUE DISCONNECT
  SESSION(name)
```

Conditions: NOTALLOC, TERMERR

Description

ISSUE DISCONNECT disconnects the unit, if DISREQ=YES is set in the TYPETERM resource definition.

Options

SESSION(name)

specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be disconnected. If this option is omitted, the principal facility for the task is disconnected.

Conditions

NOTALLOC

occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.

TERMERR

occurs for a terminal-related error, such as a session failure.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.
Description

ISSUE END ends communication with a data set in an outboard controller or with the selected medium. The data set specified in the DESTID option, or the selected medium, is deselected normally. The options CONSOLE, PRINT, CARD, and WPMEDIA1–4 are alternatives to DESTID and DESTIDLENG.

Options

CARD
specifies that the output medium is a card reader or card punch device. This option is not valid with DESTID and DESTIDLENG.

CONSOLE
specifies that the output medium is that provided for messages to the operator. This option is not valid with DESTID and DESTIDLENG. This refers to a programmable subsystem such as the IBM 3790 data communication system. It does not refer to a CICS or system console.

DESTID(data-value)
specifies the name (1–8 characters) of the data set in the outboard destination.

DESTIDLENG(data-value)
specifies the length (halfword binary value) of the name specified in the DESTID option.

PRINT
specifies that the output medium is a printer.

SUBADDR(data-value)
specifies the medium subaddress as a halfword binary value (in the range 0–15) that allows media of the same type, for example, “printer 1” or “printer 2”, to be defined. Value 15 means a medium of any type. The default is zero.

VOLUME(data-value)
specifies the name (1–6 characters) of a diskette in an outboard destination that contains the data set specified in the DESTID option.

VOLUMELENG(data-value)
specifies the length (halfword binary value) of the name specified in the VOLUME option.

WPMEDIA1 through WPMEDIA4
specifies that, for each specific LUTYPE4 device, a word-processing medium is defined to relate to a specific input/output device.

Conditions

FUNCERR
occurs if there is an error during the execution of the command. Destination selection is unaffected and other commands for the same destination may be successful.

Default action: terminate the task abnormally.

INVREQ
RESP2 values:

200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

Default action: terminate the task abnormally.
SENLERR
occurs if there is an error during destination selection.
The destination is not selected and other commands for
the same destination are unlikely to be successful.
Default action: terminate the task abnormally.

UNEXPIN
occurs when some unexpected or unrecognized
information is received from the outboard controller.
Default action: terminate the task abnormally.
ISSUE ENDFILE

Indicate the end-of-file condition to the 3740 data entry system.

\[\text{ISSUE ENDFILE} \quad \text{ENDOUTPUT}\]

Condition: INVREQ, NOTALLOC

Description

ISSUE ENDFILE indicates the end-of-file condition to the 3740.

Options

ENDOUTPUT

indicates the end-of-output condition as well as end of file.

Conditions

INVREQ

RESP2 values:

200 A distributed program link server application attempted to send on its function shipping session, its principal facility.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.
ISSUE ENDDOCUMENT

ISSUE ENDDOCUMENT

Indicate the end-of-output condition to the 3740 data entry system.

=================================

<table>
<thead>
<tr>
<th>ISSUE ENDDOCUMENT</th>
<th>ENDFILE</th>
</tr>
</thead>
</table>

Condition: INVREQ, NOTALLOC

Description

ISSUE ENDDOCUMENT indicates the end-of-output condition to the 3740.

Options

ENDFILE

indicates the end-of-file condition as well as end of output.

Conditions

INVREQ

RESP2 values:

200 A distributed program link server application attempted to send on its function shipping session, its principal facility.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.
ISSUE EODS

Send end-of-data-set function management header to the 3650 interpreter logical unit.

| ISSUE EODS
| Conditions: INVREQ, NOTALLOC, TERMERR |

Description

ISSUE EODS issues the end-of-data-set management header.

Conditions

INVREQ

RESP2 values:

- **200** A distributed program link server application attempted to send on its function shipping session, its principal facility.

 Default action: terminate the task abnormally.

NOTALLOC

occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.

TERMERR

occurs for a terminal-related error, such as a session failure.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.
ISSUE ERASE

Delete a record from a data set.

Description

ISSUE ERASE deletes a record from a keyed direct data set in an outboard controller, or erases a record from a DPCX or DXAM relative record data set.

Options

- **DEFRESP** specifies that all terminal control commands issued as a result of the ISSUE ERASE command are to request a definite response from the outboard batch program, irrespective of the specification of message integrity for the CICS task (by the system programmer).

- **DESTID(data-value)** specifies the name (1–8 characters) of the data set in the outboard destination.

- **DESTIDLENG(data-value)** specifies the length (halfword binary value) of the name specified in the DESTID option.

- **KEYLENGTH(data-value)** specifies the length of the key specified in the RIDFLD option, as a halfword binary value.

- **KEYNUMBER(data-value)** specifies the number, as a halfword binary value, of the index to be used to locate the record. There can be eight indexes (1–8). The default is 1. This option applies only to DPCX or DXAM and is mutually exclusive with RRN.

- **NOWAIT** specifies that the CICS task continues processing without waiting for the ISSUE ERASE command to complete. If this option is not specified, the task activity is suspended until the command is completed.

- **NUMREC(data-value)** for a relative record data set, specifies as a halfword binary value the number of logical records to be deleted. Records are replaced sequentially starting with the one identified by the RIDFLD option.

 For an indexed data set, NUMREC cannot be specified, because only one record is deleted.

- **RIDFLD(data-area)** specifies the record identification field.

 For a relative record data set, the RIDFLD option specifies a fullword binary integer (the relative record number of the record starting from zero); and the RRN option is used.

 For an indexed data set, the RIDFLD option specifies the key that is embedded in the data. The KEYLENGTH option is also required.

- **VOLUME(data-value)** specifies the name (1–6 characters) of a diskette in an outboard destination that contains the data set specified in the DESTID option.

- **VOLUMELENG(data-value)** specifies the length (halfword binary value) of the name specified in the VOLUME option.

Conditions

- **FUNCERR** occurs if there is an error during execution of the command. Destination selection is unaffected and other commands for the same destination may be successful.
Default action: terminate the task abnormally.

INVREQ
RESP2 values:

200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

Default action: terminate the task abnormally.

SELNERR
occurs if there is an error during destination selection. The destination is not selected and other commands for the same destination are unlikely to be successful.

Default action: terminate the task abnormally.

UNEXPIN
occurs when some unexpected or unrecognized information is received from the outboard controller.

Default action: terminate the task abnormally.
ISSUE ERASEAUP

Erase all unprotected fields of a 3270 buffer.

Conditions: INVREQ, NOTALLOC, TERMERR

Description

ISSUE ERASEAUP erases unprotected fields by:

1. Clearing all unprotected fields to nulls (X'00')
2. Resetting modified data tags in each unprotected field to zero
3. Positioning the cursor to the first unprotected field
4. Restoring the keyboard

You can use the ISSUE ERASEAUP command for the following types of 3270 logical units:

- 3270-display logical unit (LUTYPE2)
- 3270-printer logical unit (LUTYPE3)
- 3270 information display system (BTAM or TCAM)
- 3270 logical unit
- 3650 host conversational (3270) logical unit
- 3790 (3270-display) logical unit
- 3790 (3270-printer) logical unit

Options

WAIT

ensures that the erase is completed before control returns to the application program. If you omit WAIT, control returns to the application program as soon as ISSUE ERASEAUP starts processing.

Conditions

INVREQ

RESP2 values:

200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.

TERMERR

occurs if there is a terminal-related error.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.
ISSUE ERROR

Inform APPC mapped conversation partner of error.

Command:

```
ISSUE ERROR CONVID(name) STATE(cvda)
```

Conditions: INVREQ, NOTALLOC, SIGNAL, TERMERR

Description

ISSUE ERROR allows an application program to inform a process in a connected APPC system that some program-detected error has occurred. For example, a remote CICS application is notified by having EIBERR set, with EIBERRCD=X'0889'. The actions required to recover from the error are the responsibility of logic contained in both application programs. The application program can use this command to respond negatively when the CONFIRM option has been specified on a SEND command executed by a process in a connected APPC system.

Options

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal facility (returned by a previously executed ASSIGN command).

For compatibility with earlier releases, SESSION is accepted as a synonym for CONVID. New programs should use CONVID.

If both CONVID and SESSION are omitted, the principal facility is assumed.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNCSEND

Conditions

INVREQ

RESP2 values:

- 200 A distributed program link server application specified the function-shipping session on the CONVID option.

also occurs (RESP2 not set) in any of the following situations:

- The command is not valid for the APPC conversation type in use.
- The command is issued against a CPI-Communications conversation.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the specified CONVID value does not relate to a conversation owned by the application.

Default action: terminate the task abnormally.

SIGNAL

occurs when an inbound SIGNAL data-flow control command is received from a partner transaction. EIBSIG is always set when an inbound signal is received.

Default action: ignore the condition.

TERMERR

occurs for a session-related error. Any action on that conversation other than a FREE command causes an ATCV abend.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.
ISSUE LOAD

Specify the name of a program on 3650 interpreter logical unit.

\[
\text{ISSUE LOAD} \quad \text{PROGRAM}(\text{name}) \quad \text{CONVERSE}
\]

Conditions: NONVAL, NOTALLOC, NOSTART, TERMERR

Description

ISSUE LOAD specifies the name of the 3650 application program that is to be loaded.

Options

CONVERSE
specifies that the 3650 application program is able to communicate with the host processor. If this option is not specified, the 3650 application program cannot communicate with the host processor.

PROGRAM(name)
specifies the name (1–8 characters) of the 3650 application program that is to be loaded.

Conditions

NONVAL
occurs if the 3650 application program name is not valid.
Default action: terminate the task abnormally.

NOSTART
occurs if the 3651 is unable to initiate the requested 3650 application program.
Default action: terminate the task abnormally.

NOTALLOC
occurs if the facility specified in the command is not owned by the application.
Default action: terminate the task abnormally.

TERMERR
occurs for a terminal-related error.
A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.
Default action: terminate the task abnormally with abend code ATNI.
ISSUE NOTE

Request next record number.

Description

ISSUE NOTE requests the number of the next record. It finds the relative record number of the next record in an addressed direct data set. The number is returned in the data area specified in the RIDFLD option. The RRN option must be specified, because a relative record number is involved.

Options

DESTID(data-value)
specifies the name (1–8 characters) of the data set in the outboard destination.

DESTIDLENG(data-value)
specifies the length (halfword binary value) of the name specified in the DESTID option.

RIDFLD(data-area)
specifies as a 4-character field a data area the relative record number of the next record is returned in.

RRN
specifies that the record identification field specified in the RIDFLD option contains a relative record number.

VOLUME(data-value)
specifies the name (1–6 characters) of a diskette in an outboard destination that contains the data set specified in the DESTID option.

VOLUMELENG(data-value)
specifies the length (halfword binary value) of the name specified in the VOLUME option.

Conditions

FUNCERR
 occurs if there is an error during execution of the command. Destination selection is unaffected and other commands for the same destination may be successful.
Default action: terminate the task abnormally.

INVREQ
RESP2 values:
200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.
Default action: terminate the task abnormally.

SELnERR
occurs if there is an error during destination selection. The destination is not selected and other commands for the same destination are unlikely to be successful.
Default action: terminate the task abnormally.

UNEXPIN
occurs when some unexpected or unrecognized information is received from the outboard controller.
Default action: terminate the task abnormally.
ISSUE PASS

VTAM application routing.

![Diagram of ISSUE PASS syntax and conditions]

Description

ISSUE PASS disconnects the terminal from CICS after the task has terminated, and transfers it to the VTAM application defined in the **LUNAME** option.

This command requires that **AUTH=PASS** is coded on the VTAM APPL macro for the CICS terminal-owning system that issues it, with **DISCREQ=YES** or **RELREQ=YES** in the RDO TYPETERM resource definition for any terminal where this function might be used.

If the **LUNAME** specified is the name of another CICS system, you can use the EXTRACT LOGONMSG command to access the data referred to by this command.

Because of a VTAM limitation, the maximum length of the user data is restricted to 255 bytes.

Note: The system initialization parameter **CLSDSTP=NOTIFY|NONOTIFY** allows you to have the node error program (NEP) and the console notified of whether the PASS was successful or not. The NEP can be coded to reestablish a session ended by an unsuccessful PASS. For programming information about how to do this, see the section about NEP in the *CICS Customization Guide*.

Options

FROM(data-area)

specifies the data area containing the logon user data that is to be passed to the application named in the **LUNAME** option. This option may be omitted if **ATTACHID** is specified on an LUTYPE6.1 command.

LENGTH(data-value)

specifies the length, as a halfword binary value, of the data issued.

LOGMODE(data-value)

specifies the name (1–8 characters) of the VTAM logon mode table entry used by VTAM to establish the new session.

LOGONLOGMODE

specifies that the new session is to be established with the VTAM logon mode table entry in use when the session logged on.

Note: The logmode name saved is taken from the X'0D' control vector in the VTAM CINIT. This is the logmode name known in this system.

If persistent sessions (PSDINT=nnn in the SIT) is in use, then the TYPETERM definition for any terminal to be ISSUE PASSed should use **RECOVOPTION(NONE)**, because the logon LOGMODE name is not recovered across a persistent sessions restart.

If neither **LOGMODE** nor **LOGONLOGMODE** is supplied, the new session will be established with the default LOGMODE.

LUNAME(name)

specifies the name (1–8 characters) of the VTAM application to which the terminal is to be passed.

NOQUIESCE

specifies that the user can choose to recover from certain pass failures.

Conditions

INVREQ

occurs if the command is not valid for the logical unit in use.

Default action: terminate the task abnormally.

LENGERR

occurs if an out-of-range value is supplied in the **LENGTH** option.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.
ISSUE PREPARE

Issue the first flow of a syncpoint request on an APPC mapped conversation.

```plaintext
ISSUE PREPARE─ ─CONVID(name)─ ─STATE(cvda)─ ─

Conditions: INVREQ, NOTALLOC, TERMERR
```

Description

ISSUE PREPARE applies only to distributed transaction processing over APPC links. It enables a syncpoint initiator to prepare a syncpoint slave for syncpointing by sending only the first flow (prepare-to-commit) of the syncpoint exchange. Depending on the reply from the syncpoint slave, the initiator can proceed with the syncpoint by issuing a SYNCPOINT command, or initiate back-out by issuing a SYNCPOINT ROLLBACK command.

Options

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal facility (returned by a previously executed ASSIGN command).

If this option is omitted, the principal facility is assumed.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSIZEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNSSEND

Conditions

INVREQ

RESP2 values:

- 200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

also occurs (RESP2 not set) in any of the following situations:

- The conversation is not an APPC mapped conversation.
- The conversation state is not valid for the request.
- The sync level of the conversation is not 2.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the CONVID value in the command does not relate to a conversation that is owned by the application.

Default action: terminate the task abnormally.

TERMERR

occurs for a session-related error. Any action on that conversation other than a FREE causes an ATCV abend.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.
ISSUE PRINT

Print displayed data on first available printer.

Conditions: INVREQ, NOTALLOC, TERMERR

Description

ISSUE PRINT prints displayed data on the first available printer that can respond to a print request.

ISSUE PRINT can be used on a number of logical units, using the printers defined below:

- For a 3270 logical unit or a 3650 host conversational (3270) logical unit, the printer must be defined by the PRINTER or ALTPRINTER options on the RDO TERMINAL resource definition, or by a printer supplied by the autoinstall user program.

- For a 3270-display logical unit with the PTRADAPT feature, used with a 3274 or 3276, the printer is allocated by the printer authorization matrix. The PTRADAPT feature is enabled by specifying DEVICE=LUTYPE2 and PRINTADAPTER=YES on the RDO TYPETERM resource definition.

- For a 3790 (3270-display) logical unit, the printer is allocated by the 3790.

The printer must be in service, not currently attached to a task, and owned by the same CICS system that owns the terminal running the transaction.

Conditions

INVREQ

RESP2 values:

200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.

TERMERR

occurs for a terminal-related error.

An ISSUE PRINT on a BTAM 3270 information display system cannot raise the TERMERR condition.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.
ISSUE QUERY

Interrogate a data set.

<table>
<thead>
<tr>
<th>CONTROL STATEMENT syntax:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSUE QUERY DESTID(data-value) DESTIDLENG(data-value)</td>
</tr>
<tr>
<td>VOLUME(data-value) VOLUMELENG(data-value)</td>
</tr>
</tbody>
</table>

Conditions: FUNCERR, INVREQ, SELNERR, UNEXPIN

Description

ISSUE QUERY interrogates a data set. It is used to request that a sequential data set in an outboard controller be transmitted to the host system. The application program should either follow this command with ISSUE RECEIVE commands to get the resulting inbound data, or terminate the transaction to allow CICS to start a new transaction to process the data.

Options

DESTID(data-value)
 specifies the name (1–8 characters) of the data set in the outboard destination.

DESTIDLENG(data-value)
 specifies the length (halfword binary value) of the name specified in the DESTID option.

VOLUME(data-value)
 specifies the name (1–6 characters) of a diskette in an outboard destination that contains the data set specified in the DESTID option.

VOLUMELENG(data-value)
 specifies the length (halfword binary value) of the name specified in the VOLUME option.

Conditions

FUNCERR
 occurs if there is an error during execution of the command. Destination selection is unaffected and other commands for the same destination may be successful.
 Default action: terminate the task abnormally.

INVREQ
 RESP2 values:
 200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

SELNERR
 occurs if there is an error during destination selection. The destination is not selected and other commands for the same destination are unlikely to be successful.
 Default action: terminate the task abnormally.

UNEXPIN
 occurs when some unexpected or unrecognized information is received from the outboard controller.
 Default action: terminate the task abnormally.
ISSUE RECEIVE

Read a record from a data set.

```
ISSUE RECEIVE INTO(data-area) SET(ptr-ref) LENGTH(data-area)
```

Conditions: DSSTAT, EOC, EODS, INVREQ, LENGERR, UNEXPIN

Description

ISSUE RECEIVE reads a sequential data set in an outboard controller.

The INTO option specifies the area into which the data is to be placed. The LENGTH option must specify a data area that contains the maximum length of record that the program accepts. If the record length exceeds the specified maximum length, the record is truncated and the LENGERR condition occurs. After the retrieval operation, the data area specified in the LENGTH option is set to the record length (before any truncation occurred).

Alternatively, a pointer reference can be specified in the SET option. CICS then acquires an area of sufficient size to hold the record, and sets the pointer reference to the address of that area. After the retrieval operation, the data area specified in the LENGTH option is set to the record length.

The outboard controller might not send the data from the data set specified in the ISSUE QUERY command. The ASSIGN command must be used to get the value of DESTID (which identifies the data set that has actually been transmitted) and the value of DESTIDLENG (which is the length of the identifier in DESTID).

Options

INTO(data-area)

specifies the receiving field for the data read from the data set.

If you specify the ISSUE RECEIVE command with the INTO option, the parameter must be a data area that specifies the maximum length of data that the program is prepared to handle. If the value specified is less than zero, zero is assumed. If the length of the data exceeds the value specified, the data is truncated to that value and the LENGERR condition occurs. On completion of the retrieval operation, the data area is set to the original length of the data.

LENGTH(data-area)

specifies the length (halfword binary value) of the data received.

Conditions

DSSTAT

occurs when the destination status changes in one of the following ways:

- The data stream is abended.
- The data stream is suspended.

Default action: terminate the task abnormally.

EOC

occurs if the request/response unit (RU) is received with the end-of-chain (EOC) indicator set. Field EIBEOC also contains this indicator.

Default action: ignore the condition.

EODS

occurs when the end of the data set is encountered.

Default action: terminate the task abnormally.
INVREQ
 RESP2 values:

 200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

 Default action: terminate the task abnormally.

LENERR
 occurs if the length of the retrieved data is greater than the value specified by the LENGTH option.

 Default action: terminate the task abnormally.

UNEXPIN
 occurs when some unexpected or unrecognized information is received from the outboard controller.

 Default action: terminate the task abnormally.
DESCRIPTION

ISSUE REPLACE updates (replaces) a record in either a relative (addressed direct) or an indexed (keyed direct) data set in an outboard controller.

OPTIONS

DEFRESP
specifies that all terminal control commands issued as a result of the **ISSUE REPLACE** command request a definite response from the outboard batch program, irrespective of the specification of message integrity for the CICS task (by the system programmer).

DESTID(data-value)
specifies the name (1–8 characters) of the data set in the outboard destination.

DESTIDLENG(data-value)
specifies the length (halfword binary value) of the name specified in the **DESTID** option.

FROM(data-area)
specifies the data that is to be written to the data set.

KEYLENGTH(data-value)
specifies the length (halfword binary value) of the key specified in the **RIDFLD** option.

KEYNUMBER(data-value)
specifies the number, as a halfword binary value, of the index to be used to locate the record. There can be eight indexes (1 through 8). The default is 1. This option applies only to DPCX/DXAM and is mutually exclusive with **RRN**.

LENGTH(data-value)
specifies the length (halfword binary value) of the data to be written.

NUMREC(data-value)
for a relative data set, specifies as a halfword binary value the number of logical records to be replaced. Records are replaced sequentially starting with the one identified by the **RIDFLD** option.

For an indexed data set, **NUMREC** cannot be specified because only one record is replaced.

RIDFLD(data-area)
specifies the record identification field.

For a relative record data set, the **RIDFLD** option specifies a fullword binary integer (the relative record number of the record starting from zero); and the **RRN** option is used.

For an indexed data set, the **RIDFLD** option specifies the key that is embedded in the data specified by the **FROM** option. The **KEYLENGTH** option is also required.

RRN
specifies that the record identification field specified in the **RIDFLD** option contains a relative record number. This option is required for a relative record data set.

If the option is not specified, **RIDFLD** is assumed to specify a key.

VOLUME(data-value)
specifies the name (1–6 characters) of a diskette in an outboard destination that contains the data set specified in the **DESTID** option.

VOLUMELENG(data-value)
specifies the length (halfword binary value) of the name specified in the **VOLUME** option.

NOWAIT
specifies that the CICS task continues processing without waiting for the **ISSUE REPLACE** command to complete. If this option is not specified, the task activity is suspended until the command is completed.

Conditions: **FUNCERR, INVREQ, SELNERR, UNEXPIN**
Conditions

FUNCERR
occurs if there is an error during execution of the command. Destination selection is unaffected and other commands for the same destination may be successful.

Default action: terminate the task abnormally.

INVREQ
RESP2 values:

200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

Default action: terminate the task abnormally.

SELNERR
occurs if there is an error during destination selection. The destination is not selected and other commands for the same destination are unlikely to be successful.

Default action: terminate the task abnormally.

UNEXPIN
occurs when some unexpected or unrecognized information is received from the outboard controller.

Default action: terminate the task abnormally.
ISSUE RESET

ISSUE RESET

Relinquish use of a telecommunication line.

| ISSUE RESET |

Condition: INVREQ, NOTALLOC

This command is retained for compatibility only. You should be using ISSUE DISCONNECT.
ISSUE SEND

Send data to a named data set or to a selected medium.

Description

ISSUE SEND sends data to a named data set in an outboard controller, or to a selected medium in a batch logical unit or an LUTYPE4 logical unit. The options CONSOLE, PRINT, CARD, and WPMEDIA1–4 are alternatives to DESTID and DESTIDLENG.

Options

CARD
specifies that the output medium is a card reader or card punch device. This option is not valid with DESTID and DESTIDLENG.

CONSOLE
specifies that the output medium is that provided for messages to the operator. This option is not valid with DESTID and DESTIDLENG. This refers to a programmable subsystem such as the IBM 3790 data communication system. It does not refer to a CICS or system console.

DEFRESP
specifies that all terminal control commands issued as a result of the ISSUE SEND command request a definite response from the outboard batch program, irrespective of the specification of message integrity for the CICS task (by the system programmer).

DESTID(data-value)
specifies the name (1–8 characters) of the data set in the outboard destination.

DESTIDLENG(data-value)
specifies the length (halfword binary value) of the name specified in the DESTID option.

FROM(data-area)
specifies the data to be written to the data set.

LENGTH(data-value)
specifies a halfword binary value that is the length of the data to be written.

NOWAIT
specifies that the CICS task continues processing without waiting for the ISSUE SEND command to complete. If this option is not specified, the task activity is suspended until the command is completed.

PRINT
specifies that the output is to the print medium.

SUBADDR(data-value)
specifies the medium subaddress as a halfword binary value (in the range 0–15) that allows media of the same type, for example, “printer 1” or “printer 2”, to be defined. Value 15 means a medium of any type. The default is zero.

VOLUME(data-value)
specifies the name (1–6 characters) of a diskette in an outboard destination that contains the data set specified in the DESTID option.

VOLUMELENG(data-value)
specifies the length of the name specified in the VOLUME option as a halfword binary value.

Conditions: FUNCERR, IGREQCD, INVREQ, SELNERR, UNEXPIN
ISSUE SEND

WPMEDIA1 through WPMEDIA4
specifies that for each specific LUTYPE4 device, a word
processing medium is defined to relate to a specific
input/output device.

Conditions

FUNCERR
occurs if there is an error during execution of the
command. Destination selection is unaffected and other
commands for the same destination may be successful.
Default action: terminate the task abnormally.

IGREQCD
occurs when an attempt is made to execute an ISSUE
SEND command after a SIGNAL RCD data-flow control
code has been received from an LUTYPE4 logical unit.
Default action: terminate the task abnormally.

INVREQ
RESP2 values:
200 A distributed program link server application
specifies the function-shipping session (its
principal facility) on the CONVID option.

Default action: terminate the task abnormally.

SELNERR
occurs if there is an error during destination selection.
The destination is not selected and other commands for
the same destination are unlikely to be successful.
Default action: terminate the task abnormally.

UNEXPIN
occurs when some unexpected or unrecognized
information is received from the outboard controller.
Default action: terminate the task abnormally.
ISSUE SIGNAL (APPC)

Request change of direction from sending transaction on an APPC mapped conversation.

\[
\text{ISSUE SIGNAL (APPC)}
\]

Description

ISSUE SIGNAL, in a transaction in receive mode, signals to the sending transaction that a mode change is needed. It raises the SIGNAL condition on the next SEND, RECEIVE, or CONVERSE command executed in the sending transaction, and a previously executed HANDLE CONDITION command for this condition can be used either to take some action, or to ignore the request.

Options

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal facility (returned by a previously executed ASSIGN command).

For compatibility with earlier releases, SESSION is accepted as a synonym for CONVID. New programs should use CONVID.

If both CONVID and SESSION are omitted, the principal facility is assumed.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNCSEND

Conditions

INVREQ

RESP2 values:

200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

also occurs (RESP2 not set) in any of the following situations:

- The command has been used on an APPC conversation that is not using the EXEC CICS interface, or is not a mapped conversation.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the specified CONVID value does not relate to a conversation that is owned by the application.

Default action: terminate the task abnormally.

TERMERR

occurs for a session-related error. Any action on that conversation other than a FREE causes an ATCV abend.

A CANCEL TASK request by a user node error program (NEP) may cause TERMERR if the task has an outstanding terminal control request when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.
ISSUE SIGNAL (LUTYPE6.1)

Request change of direction from sending transaction on LUTYPE6.1 conversation.

Description

ISSUE SIGNAL, in a transaction in receive mode, signals to the sending transaction that a mode change is needed. It raises the SIGNAL condition on the next SEND, RECEIVE, or CONVERSE command executed in the sending transaction, and a previously executed HANDLE CONDITION command for this condition can be used either to take some action, or to ignore the request.

If both CONVID and SESSION are omitted, the principal facility for the task is used.

Options

CONVID(name)
identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal facility (returned by a previously executed ASSIGN command).

SESSION(name)
 specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used.

Conditions

NOTALLOC
occurs if the facility specified in the command is not owned by the application.
Default action: terminate the task abnormally.

TERMERR
occurs for a session-related error. Any action on that conversation other than a FREE causes an ATCV abend.
A CANCEL TASK request by a user node error program (NEP) may cause TERMERR if the task has an outstanding terminal control request when the node abnormal condition program handles the session error.
ISSUE WAIT

Wait for an operation to be completed.

Description

ISSUE WAIT suspends task activity until the previous batch data interchange command is completed. This command is meaningful only when it follows an ISSUE ADD, ISSUE ERASE, ISSUE REPLACE, or ISSUE SEND command. The options CONSOLE, PRINT, CARD, and WPMEDIA1–4 are alternatives to DESTID and DESTIDLENG.

Options

CARD
specifies that the output medium is a card reader or card punch device. This option is not valid with DESTID and DESTIDLENG.

CONSOLE
specifies that the output medium is that provided for messages to the operator. This option is not valid with DESTID and DESTIDLENG.

This refers to a programmable subsystem such as the IBM 3790 data communication system. It does not refer to a CICS or system console.

DESTID(data-value)
specifies the name (1–8 characters) of the data set in the outboard destination.

DESTIDLENG(data-value)
specifies the length (halfword binary value) of the name specified in the DESTID option.

PRINT
specifies that the output is to the print medium.

SUBADDR(data-value)
specifies the medium subaddress as a halfword binary value (in the range 0–through 15) that allows media of the same type, for example, “printer 1” or “printer 2”, to be defined. Value 15 means a medium of any type. The default is zero.

VOLUME(data-value)
specifies the name (1–6 characters) of a diskette in an outboard destination that contains the data set specified in the DESTID option.

VOLUMELENG(data-value)
specifies the length of the name specified in the VOLUME option as a halfword binary value.

WPMEDIA1 through WPMEDIA4
specifies that, for each specific LUTYPE4 device, a word-processing medium is defined to relate to a specific input/output device.

Conditions

FUNCERR
occurs if there is an error during execution of the command. Destination selection is unaffected and other commands for the same destination may be successful.

Default action: terminate the task abnormally.

INVREQ
RESP2 values:

200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

Default action: terminate the task abnormally.
ISSUE WAIT

SELNERR
occurs if there is an error during destination selection.
The destination is not selected and other commands for the same destination are unlikely to be successful.
Default action: terminate the task abnormally.

UNEXPIN
occurs when some unexpected or unrecognized information is received from the outboard controller.
Default action: terminate the task abnormally.
Create a journal record.

This command is now superseded by WAIT JOURNALNUM.

Note: This command is supported for compatibility with earlier releases of CICS. It is superseded by the WAIT JOURNALNAME command, which you are recommended to use instead.
LINK

Link to another program expecting return.

The external CICS interface (EXCI) provides a LINK command that performs all six commands of the interface in one invocation. See the *CICS External Interfaces Guide* for information about the EXCI.

```
LINK PROGRAM(name) COMMAREA(data-area) LENGTH(data-value) DATALENGTH(data-value)
INPUTMSG(data-area) INPUTMSGLEN(data-value) SYSID(systemname) SYNCONRETURN TRANSID(name)
```

Conditions: INVREQ, LENGERR, NOTAUTH, PGMIDERR, ROLLEDERR, SYSDERR, TERMERR

Description

LINK passes control from an application program at one logical level to an application program at the next lower logical level.

If the requested program is not defined to CICS, and AUTOINSTALL is active, CICS supplies a definition for the program. If this is a local definition, and the linked-to program is not already in main storage, CICS loads it.

In some circumstances, the linked-to program may reside on another CICS region—see “Distributed program link.”

When the RETURN command is executed in the linked-to program, control is returned to the program initiating the link at the next sequential executable instruction.

The linked-to program operates independently of the program that issues the LINK command with regard to handling conditions, attention identifiers, abends, and execution key. For example, the effects of HANDLE CONDITION commands in the linking program are not inherited by the linked-to program, but the original HANDLE CONDITION commands are restored on return to the linking program. See the *CICS Application Programming Guide* for more information and an illustration of the concept of logical levels.

You can use the HANDLE ABEND command to deal with abnormal terminations in other link levels. See the *CICS Application Programming Guide* for further details about the relationship between LINK and HANDLE ABEND.

Distributed program link: In any of the following cases, the link is a distributed program link (DPL):

- You specify a remote region name on the SYSID option (with or without the associated TRANSID and SYNCONRETURN options).
- The REMOTESYSTEM option on the installed PROGRAM definition specifies the name of a remote region.
- The installed program definition specifies DYNAMIC(YES)—or there is no installed program definition—and the dynamic routing program routes the link request to a remote region.

In response to a distributed program link, the local CICS region (the client region) ships the link request to the remote region (the server region). The server region executes the linked-to program (the server program) on behalf of the program issuing the link request (the client program).

The SYSID and INPUTMSG options are mutually exclusive. If you specify both options on a LINK command, the translator issues error message DFH7230 (severity E) indicating conflicting options. See the DFH7xxx (DFHExP command translator diagnostic) messages entry in the *CICS Messages and Codes* manual for an explanation of severity E for the different supported languages.

A server program running in the server region is restricted to a DPL subset of the CICS API. Briefly, the server program cannot issue:

- Terminal control commands that reference the principal facility

2 By “installed program definition” we mean a program definition that has been installed statically, by means of autoinstall, or by an EXEC CICS CREATE command.
• Options of ASSIGN that return terminal attributes
• BMS commands
• Signon and signoff commands
• Batch data interchange commands
• Commands that address the TCTUA.

For details of the restricted DPL subset of the API, see Appendix G, “API restrictions for distributed program link” on page 413.

Abends in the server program: If a server program abends, the abend code is returned to the client program. If the client program is not written to handle the abend returned by the server program, the client program abends with the same abend code returned by the server program.

You cannot use DPL to link to the CICS master terminal program, DFHEMTA, or to the RDO program, DFHEDAP. The addresses passed as parameters to DFHEMTA and DFHEDAP are valid only in the region that issues the EXEC CICS LINK command, which means you cannot route a DFHEMTA or DFHEDAP request to a remote CICS.

Important
For examples of the use of the LINK command when the linked program is remote, see the CICS Application Programming Guide. For information about writing a dynamic routing program, see the CICS Customization Guide.

Options

COMMAREA(data-area)
specifies a communication area that is to be made available to the invoked program. In this option the data area is passed, and you must give it the name DFHCOMMAREA in the receiving program. (See the section about passing data to other programs in the CICS Application Programming Guide.)

DATALENGTH(data-value)
specifies a halfword binary value that is the length of a contiguous area of storage, from the start of the COMMAREA, to be passed to the invoked program. If the amount of data being passed in a COMMAREA is small, but the COMMAREA itself is large so that the linked-to program can return the requested data, you should specify DATALENGTH in the interest of performance.

DATALENGTH cannot be used at the same time as INPUTMSG.

INPUTMSG(data-area)
specifies data to be supplied to the invoked program when it first issues a RECEIVE command. This data remains available until the execution of a RECEIVE or RETURN command. An invoked program can invoke a further program and so on, creating a chain of linked programs. If a linked-to chain exists, CICS supplies the INPUTMSG data to the first RECEIVE command executed in the chain. If control returns to the program that issued the LINK with INPUTMSG before the INPUTMSG data has been accepted by a RECEIVE command, CICS assumes that a RECEIVE command has been issued. This means that the original INPUTMSG data is no longer available.

INPUTMSG cannot be used at the same time as DATALENGTH.

See also the CICS Application Programming Guide for more information about the INPUTMSG option.

INPUTMSGLEN(data-value)
specifies a halfword binary value to be used with INPUTMSG.

LENGTH(data-value)
specifies a halfword binary value that is the length in bytes of the COMMAREA (communication area). This value may not exceed 32 500 bytes if the COMMAREA is to be passed between any two CICS servers (for any combination of product/version/release).

PROGRAM(name)
specifies the identifier (1–8 characters) of the program to which control is to be passed unconditionally.

In any of the following cases, the linked-to program is a server program in a remote region:

• The SYSID option specifies a remote region.
• The REMOTESYSTEM option on the installed PROGRAM definition specifies the name of a remote region.
• The installed program definition specifies DYNAMIC(YES)—or there is no installed program definition—and the dynamic routing program routes the link request to a remote region.

Note the use of quotes:

EXEC CICS LINK PROGRAM('PROGX')

PROGX is in quotes because it is the program name.

EXEC CICS LINK PROGRAM('DAREA')

3 By “installed program definition” we mean a program definition that has been installed statically or dynamically by means of autoinstall, or by an EXEC CICS CREATE command.
DAREA is not in quotes because it is the name of a data area that contains the actual program name.

SYNCONRETURN specifies that the server region named on the SYSID option is to take a syncpoint on successful completion of the server program.

Changes to recoverable resources made by the server program are committed or rolled-back independently of changes to recoverable resources made by the client program issuing the LINK request, or changes made by the server in any subsequent LINK.

- The NORMAL condition is returned if changes to recoverable resources are committed before return from the server program.
- The ROLLEDBACK condition is returned if changes to recoverable resources are rolled back before return from the server program.
- The TERMERR condition is raised following failure of the communications link or the system in which the server program is executing. The client program is responsible for handling the condition and ensuring that data consistency is restored.

Synconreturn is only applicable to remote LINKs, it is ignored if the LINK is local.

SYSID(systemname) specifies the system name of a CICS server region to where the program link request is to be routed.

If SYSID specifies a remote system, no reference is made to PROGRAM resource definitions held locally. If SYSID specifies the local system, CICS treats the LINK request as if SYSID was not specified.

A remote system name specified on the SYSID option takes priority over any remote system name returned by the dynamic routing program.

TRANSID(name) specifies the name of the mirror transaction that the remote region is to attach, and under which it is to run the server program. If you omit the TRANSID option, the server region attaches either CSMI, CPMI, or CVMI by default.

The transaction name you specify on the LINK command takes priority over any transaction specified on the program resource definition. Whilst you can specify your own name for the mirror transaction initiated by DPL requests, the transaction must be defined in the server region, and the transaction definition must specify the mirror program, DFHMIRS.

Conditions

INVREQ
RESP2 values:

8 A LINK command with the INPUTMSG option is issued for a program that is not associated with a terminal, or that is associated with an APPC logical unit, or an IRC session.

14 The SYNCONRETURN option is specified but the program issuing the link request (the client program) is already in conversation with a mirror task (that is, a unit of work (UOW) is in progress) in the remote region specified on the SYSID option. In this case, the client program is in an incorrect state to support the SYNCONRETURN option.

15 The program issuing the link request is already in conversation with a mirror task and the TRANSID specified is different from the transaction identifier of the active mirror.

16 The TRANSID specified is all blanks.

17 The TRANSID supplied by the dynamic routing program is all blanks.

19 A LINK command with the INPUTMSG option is issued for a program that is the subject of a DPL request; that is, SYSID is also specified.

30 The program manager domain has not yet been initialized. This is probably due to a link request having been made in a first stage PLT.

Default action: terminate the task abnormally.

Note: RESP2 values are not returned to the client for conditions occurring in a DPL server program.

LENGERR

RESP2 values:

11 The COMMAREA length is less than 0 or greater than 32767.

12 The length specified on the DATALENGTH option is a negative value.

13 The length specified on the DATALENGTH option is greater than the length specified on the LENGTH option.

26 The COMMAREA address is zero, but the COMMAREA length is non zero.

27 The INPUTMSG length is less than 0 or greater than 32767.

also occurs (RESP2 not set) in any of the following situations:

- The length specified on the LENGTH option is greater than the length of the data area specified in the COMMAREA option, and while that data was being copied a destructive overlap occurred because of the incorrect length.

Default action: terminate the task abnormally.
Note: RESP2 values are not returned to the client for conditions occurring in a DPL server program.

NOTAUTH
RESP2 values:

101 A resource security check has failed on PROGRAM(name).

Default action: terminate the task abnormally.

PGMIDERR
RESP2 values:

1 A program has no entry in the PPT and either program autoinstall was switched off, or the program autoinstall control program indicated that the program should not be autoinstalled.

2 A program is disabled.

3 A program could not be loaded because
 • This was the first load of the program and the program load failed, usually because the load module could not be found.
 • This was a subsequent load of the program, but the first load failed.

In order to reset the load status the load module must be in the DFHRPL concatenation, and a SET PROGRAM NEWCOPY will be required.

21 The program autoinstall control program failed either because the program autoinstall control program is incorrect, incorrectly defined, or as a result of an abend in the program autoinstall control program. Program autoinstall is disabled and message DFHPG0202 or DFHPG0203 written to the CSPL.

22 The model returned by the program autoinstall control program was not defined in the PPT table, or was not enabled.

23 The program autoinstall control program returned invalid data.

24 Define for the program failed due to autoinstall returning an invalid program name or definition.

25 The dynamic routing program rejected the link request.

Default action: terminate the task abnormally.

ROLLEDBACK
RESP2 values:

29 The SYNCONRETURN is specified and the server program is unable successfully to take a syncpoint. The server program has taken a rollback, and all changes made to recoverable resources in the remote region, within the current unit of work, are backed out.

Default action: terminate the task abnormally.

SYSIDERR
RESP2 values:

18 The SYSID specified cannot be found in the intersystem table.

20 The remote system specified by SYSID is an LUTYPE6.1-connected system. Distributed program link requests are not supported on LUTYPE6.1 connections.

Notes:
1. There is no local queuing in the event of a SYSIDERR.
2. RESP2 values are not returned for conditions occurring on DPL requests.

28 The remote system specified by SYSID is not in service.

29 The remote system specified by SYSID is in service, but there are no sessions available, and the dynamic routing program has chosen not to queue the link request.

31 The request to allocate a session to the remote system has been rejected.

32 The queue of allocate requests for sessions to the remote system has been purged.

Default action: terminate the task abnormally.

TERMERR
RESP2 values:

17 An irrecoverable error occurs during the conversation with the mirror (for example, if the session fails, or if the server region fails).

Default action: terminate the task abnormally.

Note: RESP2 values are not returned to the client for conditions occurring in a DPL server program.

Examples
The following example shows how to request a link to an application program called PROGNAME:

```
EXEC CICS LINK PROGRAM(PROGNAME) COMMAREA(COMA) LENGTH(LENA) DATALENGTH(LENI) SYSID('CONX')
```
LOAD

Load a program from the CICS DFHRPL concatenation library into main storage.

LOAD

Load a program from the CICS DFHRPL concatenation library into main storage.

Conditions: INVREQ, LENGERR, NOTAUTH, PGMIDERR

Dynamic transaction routing

Using LOAD with HOLD, or using a resource that has been defined with RELOAD=YES, could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the CICS Application Programming Guide for more information about transaction affinities.

Description

Load makes available to the invoking task a copy of an application program, table, or map. If the program is defined with RELOAD=NO, it is only fetched from the library where it resides, if there is not a copy already in main storage. If the program is defined with RELOAD=YES, a new copy is always fetched from the library. (See the CICS Application Programming Guide for further details about maps.) Using LOAD can reduce system overhead.

Options

ENTRY(ptr-ref)

specifies the pointer reference that is to be set to the address of the entry point in the program that has been loaded.

The top bit of the address is set on if the program is defined with AMODE=31.

For assembler programs without an explicit ENTRY defined in the linkedit definitions, the entry point returned depends on (1) whether there is a CICS stub, and (2) whether the LOAD command is issued from a PLT program:

- If there is a CICS stub, the entry point address is incremented for this stub unless the LOAD command is issued from a PLT program executed during the first phase of initialization or the final phase of shutdown.
- If there is not a CICS stub, the entry point address is the same as the load point address.

FLENGTH(data-area)

specifies a fullword binary area to be set to the length of the loaded program, table, or map. Use FLENGTH if the length of the loaded program is greater than 32KB.

HOLD

specifies that the loaded program, table, or map is not to be released (if still available) when the task issuing the LOAD command is terminated; it is to be released only in response to a RELEASE command from this task or from another task.

If you omit HOLD, the program, table, or map is released when the task that issued the load terminates or issues a RELEASE command.

If, however, the program is defined with RELOAD=YES, neither of the above apply. RELEASE does not work, and a FREEMAIN must be issued to get rid of the program.

LENGTH(data-area)

specifies a halfword binary value to be set to the length of the loaded program, table, or map. To avoid raising the LENGERR condition, use FLENGTH if the length of the loaded program is likely to be greater than 32KB.

PROGRAM(name)

specifies the identifier (1–8 characters) of a program, table, or map to be loaded. The specified name must have been defined as a program to CICS, though if AUTOINSTALL is active a definition is autoinstalled.

SET(ptr-ref)

specifies the pointer reference that is to be set to the address at which a program, table, or map is loaded.

Conditions

INVREQ

RESP2 values:

30 The program manager domain has not yet been initialized. This is probably due to a load request having been made in a first stage PLT.
Default action: terminate the task abnormally.

LENGERR

RESP2 values:

19 LENGTH is used and the length of the loaded program is not less than 32KB.

Default action: terminate the task abnormally.

NOTAUTH

RESP2 values:

101 A resource security check has failed on PROGRAM(name).

Default action: terminate the task abnormally.

PGMIDERR

RESP2 values:

1 A program, table, or map has no entry in the PPT and either program autoinstall was switched off, or the program autoinstall control program indicated that the program should not be autoinstalled.

2 A program is disabled.

3 A program could not be loaded because:
 - This was the first load of the program and the program load failed, usually because the load module could not be found.
 - This was a subsequent load of the program, but the first load failed.

In order to reset the load status the load module must be in the DFHRPL concatenation, and a SET PROGRAM NEWCOPY will be required.

9 The installed program definition is for a remote program.

21 The program autoinstall control program failed either because the program autoinstall control program is incorrect, incorrectly defined, or as a result of an abend in the program autoinstall control program. Program autoinstall is disabled and message DFHPG0202 or DFHPG0203 written to the CSPL.

22 The model returned by the program autoinstall control program was not defined in the PPT table, or was not enabled.

23 The program autoinstall control program returned invalid data.

24 Define for the program failed due to autoinstall returning an invalid program name or definition.

Default action: terminate the task abnormally.

Examples

The following example shows how to load a user-prepared table called TB1:

```cics
EXEC CICS LOAD PROGRAM('TB1') SET(PTR)
```
MONITOR

MONITOR

Code a user event-monitoring point.

```plaintext
MONITOR—POINT(data-value) DATA1(data-area) DATA2(data-area) ENTRYNAME(data-area)
```

Condition: INVREQ

Description

MONITOR provides information about the performance of your application transactions. It replaces the monitoring aspects of ENTER TRACEID.

In addition to the monitoring data collected at predefined event monitoring points (EMPs) within CICS, a user application program can contribute data to user fields within the CICS monitoring records. You can do this by using the MONITOR command to invoke user-defined EMPs. At each of these user EMPs, you can add or change 1–16384 bytes of your own data in each performance monitoring record. In those 16384 bytes, you can have any combination of the following:

- 0 through 256 counters
- 0 through 256 clocks
- A single 8192-byte character string

Options

DATA1(data-area)

specifies a 4-byte variable whose contents depend on the type of user EMP being used:

- If the user EMP contains an ADDCNT, SUBCNT, NACNT, EXCNT, or ORCNT option, the DATA1 variable is an area used as defined by the MCT user EMP definition.
- If the MCT user EMP definition contains an MLTCNT option, the DATA1 variable is an area with the address of a series of adjacent fullwords containing the values to be added to the user count fields defined in the MCT user EMP definition.
- If the MCT user EMP definition contains a MOVE option, the DATA1 variable is an area with the address of the character string to be moved.

See the CICS Resource Definition Guide for details of user EMP options.

DATA2(data-area)

specifies a 4-byte variable whose contents depend on the type of user EMP being used:

- If the user EMP contains an ADDCNT, SUBCNT, NACNT, EXCNT, or ORCNT option, the DATA2 variable is an area used as defined by the MCT user EMP definition.
- If the MCT user EMP definition contains an MLTCNT option, the DATA2 variable is an area with the number of user count fields to be updated. The number specified in DATA2 overrides the default value defined in the MCT for the operation. A value of zero instructs monitoring to use the default. If DATA2 is not specified, the MLTCNT operation raises an INVREQ condition although the operation was successful.
- If the MCT user EMP definition contains a MOVE option, the DATA2 variable is an area with the length of the character string to be moved. The number specified in DATA2 will override the default value defined in the MCT for the operation. A value of zero instructs monitoring to use the default. If DATA2 is not specified, the MOVE operation raises an INVREQ although the operation was successful.

See the CICS Resource Definition Guide for details of user EMP options.

ENTRYNAME(data-area)

is the monitoring point entry name that qualifies the POINT value and is defined in the monitoring control table (MCT). ENTRYNAME defaults to USER if not specified.

POINT(data-value)

specifies the monitoring point identifier as defined in the MCT, and is in the range 0 through 255. Note, however, that point identifiers in the range 200 through 255 are reserved for use by IBM program products.

Conditions

INVREQ

RESP2 values:

1. Your POINT value is outside the range 1 through 255.
2. Your POINT value is not defined in the MCT.
3 Your DATA1 value is not valid.
4 Your DATA2 value is not valid.
5 You did not specify DATA1 for an MCT operation that required it.
6 You did not specify DATA2 for an MCT operation that required it.

Default action: terminate the task abnormally.

Examples

For example, you could use these user EMPs to count the number of times a certain event occurs, or to time the interval between two events.

Figure 4 gives examples of MONITOR commands (and of the MCT entries you need for them). See the CICS Customization Guide for more information about monitoring.

Notes:

1. Example 1 shows a user clock being started by an application identified as PROG3. This is the eleventh EMP in this application. To prevent confusion with the eleventh EMP in another application, this EMP is uniquely identified by the tag ENTRY3.11. The clock that is being started is the first clock in a string.

2. Example 2 shows the same user clock being stopped, by the same application, but from a different EMP. The EMP is uniquely identified by the tag ENTRY3.12.

3. Example 3 shows some user data being loaded into the 32-byte character string reserved for that purpose. The loading starts at offset 0, and the data is no more than 32 bytes in length.
Get information about an LUTYPE6.1 logical unit.

```
POINT
```

Description

POINT gets information about a named facility, such as whether it owns the given facility.

This command can be used on an MRO session.

Options

- **CONVID(name)**
 - Identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

- **SESSION(name)**
 - Specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used. If both this option and CONVID are omitted, the principal facility for the task is used.

Conditions

NOTALLOC
- Occurs if the facility specified in the command is not owned by the application.

 Default action: terminate the task abnormally.
POP HANDLE

Restore the stack.

Condition: INVREQ

Description

POP HANDLE enables you to restore the effect of IGNORE CONDITION, HANDLE ABEND, HANDLE AID, and HANDLE CONDITION commands to the state they were in before a PUSH HANDLE command was executed at the current link level. This can be useful, for example, during a branch to a subroutine embedded in a main program.

Normally, when a CICS program calls a subroutine (at the same logical level), the program or routine that receives control inherits the current HANDLE commands. These commands may not be appropriate within the called program. The called program can use PUSH HANDLE to suspend existing HANDLE commands, and before returning control to the caller, can then restore the original commands using the POP HANDLE command.

Note: When a CICS program uses EXEC CICS LINK to call another CICS program, the HANDLE effects are NOT inherited by the linked-to program, but CICS will search preceding logical levels for a HANDLE ABEND exit. See CICS Application Programming Guide for further details about the relationship between LINK and HANDLE ABEND.

You can nest PUSH HANDLE...POP HANDLE command sequences within a task. Each POP HANDLE command restores a set of specifications.

The C language does not support POP HANDLE.

Conditions

INVREQ
occurs if no matching PUSH HANDLE command has been executed at the current link level.

Default action: terminate the task abnormally.
POST

POST

Request notification when a specified time has expired.

```
POST
  INTERVAL(0)
  INTERVAL(hhmmss)
  TIME(hhmmss)
  AFTER
    HOURS(data-value)
    MINUTES(data-value)
    SECONDS(data-value)
  AT
    HOURS(data-value)
    MINUTES(data-value)
    SECONDS(data-value)

SET(ptr-ref)

REQID(name)
```

Conditions: EXPIRED, INVREQ

Note for dynamic transaction routing

Using POST if later CANCELeD by another task could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the CICS Application Programming Guide for more information about transaction affinities.

Description

POST requests notification that a specified time has expired. In response to this command, CICS makes a timer-event control area available for testing. This 4-byte control area is initialized to binary zeros, and the pointer reference specified in the SET option is set to its address.

When the time you specify has expired, the timer-event control area is posted; that is, its first byte is set to X'40' and its third byte to X'80'. You can test posting in either of the following ways:

- By checking the timer-event control area at intervals. You must give CICS the opportunity to post the area; that is, the task must relinquish control of CICS before you test the area. Normally, this condition is satisfied as a result of other commands being issued; if a task is performing a long internal function, you can force control to be relinquished by issuing a SUSPEND command.
- By suspending task activity by a WAIT EVENT or WAIT EXTERNAL command until the timer-event control area is posted. This action is similar to issuing a DELAY command but, with a POST and WAIT EVENT or WAIT EXTERNAL command sequence, you can do some processing after issuing the POST command; a DELAY command suspends task activity at once. No other task should attempt to wait on the event set up by a POST command.
- By using WAITCICS.

The timer-event control area can be released for a variety of reasons. If this happens, the result of any other task issuing a WAIT command on the event set up by the POST command is unpredictable.

However, other tasks can cancel the event if they have access to the REQID associated with the POST command. (See the CANCEL command and the description of the REQID option.) A timer-event control area provided for a task is not released or altered (except as described above) until one of the following events occurs:

- The task issues a subsequent DELAY, POST, or START command.
- The task issues a CANCEL command to cancel the POST command.
- The task is terminated, normally or abnormally.
- Any other task issues a CANCEL command for the event set up by the POST command.

A task can have only one POST command active at any given time. Any DELAY, POST, or START command supersedes a POST command previously issued by the task.

The default is INTERVAL(0), but for C the default is AFTER HOURS(0) MINUTES(0) SECONDS(0).

Options

AFTER specifies the interval of time to elapse.

There are two ways to enter the time under AFTER and AT.
1. A combination of at least two of HOURS(0–99), MINUTES(0–59), and SECONDS(0–59). HOURS(1) SECONDS(3) would mean one hour and three seconds (the minutes default to zero).

2. As one of HOURS(0–99), MINUTES(0–5999), or SECONDS(0–359999). HOURS(1) means one hour. MINUTES(62) means one hour and two minutes. SECONDS(3723) means one hour, two minutes, and three seconds.

AT specifies the time of expiring. For the ways to enter the time, see the AFTER option.

HOURS(data-value)**

specifies a fullword binary value in the range 0–99. This is a suboption of the AFTER and AT options. For its use and meaning, see the AFTER option.

INTERVAL(hhmmss)**

specifies an interval of time that is to elapse from the time at which the POST command is issued. The *mm* and *ss* are in the range 0–59. The time specified is added to the current clock time by CICS when the command is executed to calculate the expiration time.

This option is used to specify when the posting of the timer-event control area should occur.

When using the C language, you are recommended to use the AFTER/AT HOURS, MINUTES, and SECONDS options as C does not provide a packed decimal data type. You may use INTERVAL, but if the value specified is not an integer constant, the application is responsible for ensuring that the value passed to CICS is in packed decimal format.

MINUTES(data-value)**

specifies a fullword binary value in the range 0–59, when HOURS or SECONDS are also specified, or 0–5999 when MINUTES is the only option specified. This is a suboption of the AFTER and AT options. For its use and meaning, see the AFTER option.

REQID(name)**

specifies a name (1–8 characters), which should be unique, to identify the POST request. Using this option to specify an application-defined name is one way to enable another transaction to cancel the POST request.

If you do not specify your own REQID, CICS generates a unique request identifier for you in the EIBREQID field of the EXEC interface block. This, like your own REQID, can be used by another transaction to cancel the POST request.

To enable other tasks to cancel unexpired POST requests, you must make the request identifier dynamically available. For example, storing it in a TS queue, whose name is known to other applications that may want to cancel the POST request, is one way you can pass a request identifier to other transactions.

SECONDS(data-value)**

specifies a fullword binary value in the range 0–59, when HOURS or MINUTES are also specified, or 0–359999 when SECONDS is the only option specified. This is a suboption of the AFTER and AT options. For its use and meaning, see the AFTER option.

SET(ptr-ref)**

specifies the pointer reference to be set to the address of the 4-byte timer-event control area generated by CICS. This area is initialized to binary zeros; on expiration of the specified time, the first byte is set to X'40', and the third byte to X'80'.

The timer-event control area always resides below the 16MB line in shared dynamic storage (SDSA).

TIME(hhmmss)**

specifies the time when the posting of the timer-event control area should occur.

When using the C language, you are recommended to use the AFTER/AT HOURS, MINUTES, and SECONDS options as C does not provide a packed decimal data type. You may use TIME, but if the value specified is not an integer constant, the application is responsible for ensuring that the value passed to CICS is in packed decimal format. See the section about expiration times in the *CICS Application Programming Guide*.

Conditions

EXPIRED

occurs if the time specified has already expired when the command is issued.

Default action: ignore the condition.

INVREQ

RESP2 values:

- 4 Hours are out of range.
- 5 Minutes are out of range.
- 6 Seconds are out of range.

also occurs (RESP2 not set) in any of the following situations:

- The POST command is not valid for processing by CICS.

Default action: terminate the task abnormally.
Examples

The following example shows you how to request a timer-event control area for a task, to be posted after 30 seconds:

```cics
EXEC CICS POST
   INTERVAL(30)
   REQID('RBL3D')
   SET(PREF)
```

The following example shows you how to ask to be notified when the specified time of day is reached. Because no request identifier is specified in the command, CICS automatically assigns one and returns it to the application program in the EIBREQID field in the EIB.

```cics
EXEC CICS POST
   TIME(PACKTIME)
   SET(PREF)
```
PURGE MESSAGE

Discontinue building a BMS logical message.

<table>
<thead>
<tr>
<th>PURGE MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions: Full BMS: INVREQ, TSIOERR</td>
</tr>
</tbody>
</table>

Description

PURGE MESSAGE discontinues the building of a BMS logical message. It deletes the current logical message, including any pages of device-dependent data stream already written to CICS temporary storage. The application program may then build a new logical message.

The portions of the logical message already built in main storage or in temporary storage are deleted.

See Appendix K, “BMS macro summary” on page 427 for map definition macros.

PURGE MESSAGE is only available on full-function BMS. For further information about BMS, see the CICS Application Programming Guide.

Conditions

INVREQ

RESP2 values:

200 The command was called in a distributed program link server program.

Default action: terminate the task abnormally.

TSIOERR

occurs if there is an irrecoverable temporary storage input/output error.

Default action: terminate the task abnormally.
PUSH HANDLE

Suspend the stack.

PUSH HANDLE

Description

PUSH HANDLE enables you to suspend the current effect of IGNORE CONDITION, HANDLE ABEND, HANDLE AID, and HANDLE CONDITION commands. This can be useful, for example, during a branch to a subroutine embedded in a main program.

Normally, when a CICS program calls a subroutine at the same logical level, the program or routine that receives control inherits the current HANDLE commands. These commands may not be appropriate within the called program. The called program can use PUSH HANDLE to suspend existing HANDLE commands.

Note: When a CICS program uses EXEC CICS LINK to call another CICS program, the HANDLE CONDITION options are NOT inherited by the linked-to program, but CICS will search preceding logical levels for a HANDLE ABEND exit. See CICS Application Programming Guide for further details about the relationship between LINK and HANDLE ABEND.

You can nest PUSH HANDLE ... POP HANDLE command sequences within a task. Each PUSH HANDLE command stacks a set of specifications.

The C language does not support PUSH HANDLE.
QUERY COUNTER

Query a named counter.

Description

These counter commands return the current, maximum, and minimum values for the named counter. COUNTER operates on fullword named counters and DCOUNTER operates on doubleword named counters.

For information about specifying fullword and doubleword variables on these named counter commands, see “Argument values” on page 2.

Options

<table>
<thead>
<tr>
<th>COUNTER(name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the 16-character name of the fullword counter being queried. Valid characters for names are A through Z, 0 through 9, $ @ # and _ (underscore). If name is a variable that contains a name that is less than 16 characters, the name must be padded with trailing blanks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DCOUNTER(name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the 16-character name of the doubleword counter being queried. Valid characters for names are A through Z, 0 through 9, $ @ # and _ (underscore). If name is a variable that contains a name that is less than 16 characters, the name must be padded with trailing blanks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MINIMUM(data-area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the data area in which CICS is to return the minimum number for the named counter. CICS returns a fullword signed binary value for the COUNTER command and a doubleword unsigned binary value for the DCOUNTER command</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POOL(poolname)</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the name of the pool in which the named counter resides. Valid characters for the pool selector string are A through Z, 0 through 9, $ @ # and _ (underscore). If name is a variable that contains a name that is less than 8 characters, the name must be padded with trailing blanks. This parameter is optional. If you omit the name of the pool, a pool selector value of 8 blanks is assumed. If there is no matching entry in the DFHNCOPT options table, CICS uses the name specified on the NCPLDFT system initialization parameter, which specifies the default named counter pool. For information about generating a named counter options table using the DFHNCO macro, see the CICS System Definition Guide.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VALUE(data-area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the data area in which CICS is to return the current value for the named counter. CICS returns a fullword signed binary value for the COUNTER command and a doubleword unsigned binary value for the DCOUNTER command</td>
</tr>
</tbody>
</table>

Conditions

<table>
<thead>
<tr>
<th>INVREQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVREQ, LENGERR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POOL(name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the name of the pool in which the named counter resides. Valid characters for the pool selector string are A through Z, 0 through 9, $ @ # and _ (underscore). If name is a variable that contains a name that is less than 8 characters, the name must be padded with trailing blanks. This parameter is optional. If you omit the name of the pool, a pool selector value of 8 blanks is assumed. If there is no matching entry in the DFHNCOPT options table, CICS uses the name specified on the NCPLDFT system initialization parameter, which specifies the default named counter pool. For information about generating a named counter options table using the DFHNCO macro, see the CICS System Definition Guide.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VALUE(data-area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the data area in which CICS is to return the current value for the named counter. CICS returns a fullword signed binary value for the COUNTER command and a doubleword unsigned binary value for the DCOUNTER command</td>
</tr>
</tbody>
</table>
QUERY COUNTER

INVREQ

RESP2 values:

201 Named counter not found.

301 The server has reported an error code that is not understood by the named counter interface. Generally, this is not possible unless the interface load module, DFHNCIF, is at a lower maintenance or release level than the server itself.

303 An unexpected error, such as structure failure or loss of connectivity, has occurred on a macro used to access the coupling facility. Further information can be found in message DFHNC0441 in the CICS job log.

304 The pool selection parameter specified in the program cannot be resolved to a valid server name using the current options table.

305 The interface is unable to establish a connection to the server for the selected named counter pool. Further information can be found in an AXM services message (AXMSCnnnn) in the CICS job log.

306 An abend occurred during server processing of a request. Further information can be found in a message in the CICS job log and the server job log.

308 The DFHNCOPT options table module, required for resolving a pool name, could not be loaded.

309 During processing of the options table, the named counter interface encountered an unknown entry format. Either the options table is not correctly generated, or the DFHNCIF interface load module is not at the same release level as the options table.

310 An options table entry matching the given pool name specified a user exit program, but the user exit program is not link-edited with the options table and cannot be loaded.

403 The POOL parameter contains invalid characters or embedded spaces.

404 The COUNTER parameter contains invalid characters or embedded spaces.

Default action: terminate the task abnormally.

LENGERR

LENGERR occurs for COUNTER commands only and does not apply to DCOUNTER requests. It occurs when a counter that was defined by a DCOUNTER command has become negative when accessed as a fullword signed binary value (that is, the counter uses more than 31 bits).

In each of the three cases of overflow, the named counter server completes the operation, and returns a warning response to CICS, which CICS returns to your application program as the RESP2 value. The data area contains the low-order 32 bits returned from the named counter server, which could be a negative number.

RESP2 values:

001 The current value that the server has attempted to return in one of the data areas has overflowed into the high-order (sign) bit (that is, the value returned is negative).

Note: LENGERR with RESP2=001 cannot occur for a named counter that is in the counter-at-limit condition. If the counter-at-limit condition has been reached, the value (which could be negative) is returned with a normal response.

002 A value is too large for a fullword data area by only 1 bit. In this case, the overflow value is exactly 1.

003 A value is too large for a fullword data area by a value greater than 1.

Default action: terminate the task abnormally.
QUERY SECURITY

To query the security authorization of the user.

<table>
<thead>
<tr>
<th>QUERY SECURITY</th>
<th>RESTYPE(data-value)</th>
<th>RESID(data-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RESCLASS(data-value)</td>
<td>RESIDLENGTH(data-value)</td>
</tr>
<tr>
<td>LOGMESSAGE(cvda)</td>
<td>READ(cvda)</td>
<td>UPDATE(cvda)</td>
</tr>
</tbody>
</table>

Conditions: INVREQ, LENGERR, NOTFND, QIDERR

Description

QUERY SECURITY allows the application to determine whether the user has access to resources defined in the external security manager (ESM). These resources can be:

- In CICS resource classes
- In user-defined resource classes

The user in this context is the user invoking the transaction that contains the QUERY SECURITY command.

For more information on the use of the QUERY SECURITY command, see the CICS RACF Security Guide.

Options

ALTER(cvda)
enables you to query whether the user has ALTER authority for the named resource. The cvda values returned by CICS are ALTERABLE and NOTALTERABLE.

CONTROL(cvda)
enables you to query whether the user has CONTROL authority for the named resource. The cvda values returned by CICS are CTRLABLE and NOTCTRLABLE.

LOGMESSAGE(cvda)
enables you to inhibit security violation messages. The values passed to CICS are LOG (the default value), or, to inhibit messages, NOLOG.

READ(cvda)
enables you to query whether the user has READ authority command for the named resource. The cvda values returned by CICS are READABLE and NOTREADABLE. READ access authority usually permits nondestructive use of a resource as, for example, in the case of READ and INQUIRE commands.

RESCLASS(data-value)
specifies an 8-character field identifying the name of a valid resource class, that could be non-CICS, in the ESM. The class name identified by RESCLASS is treated literally with no translation.

RESID(data-value)
specifies the name of the CICS or user-defined resource that you want to query the user’s access to. The value is a character string (1-12 characters for a CICS resource, and 1-246 characters for a user-defined resource, unless you are using the COBOL3 or OOCOBOL translator option in which case the maximum length is 160 characters).

Note: RESID refers to a CICS-defined resource only when RESTYPE('SPCOMMAND') is specified, otherwise it refers to a user-defined resource. For a list of the CICS RESID values that you can use when RESTYPE('SPCOMMAND') is specified, see the CICS RACF Security Guide.

If the ESM is RACF, the class can be CICS-supplied or user-defined. RESCLASS enables you to define more narrowly the authorization to be queried; for example, you can query at the record or field level.

The responses returned by the command reflect the definition of the RESID resource as defined in the specified RESCLASS.

RESTYPE(data-value)
specifies the type of resource (1–12 characters) you want to query the user’s access to.

Note: For a list of possible values, see the CICS RACF Security Guide.
QUERY SECURITY

The responses returned by the command reflect the results that would be obtained if an actual attempt was made to access the specified CICS resource. The value you specify for RESTYPE must be one of the following resource types:

<table>
<thead>
<tr>
<th>RESOURCE TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB2ENTRY</td>
</tr>
<tr>
<td>FILE</td>
</tr>
<tr>
<td>JOURNALNAME</td>
</tr>
<tr>
<td>JOURNALNUM</td>
</tr>
<tr>
<td>PROGRAM</td>
</tr>
<tr>
<td>PSB</td>
</tr>
<tr>
<td>SPCOMMAND</td>
</tr>
<tr>
<td>TDQUEUE</td>
</tr>
<tr>
<td>TRANSACTION</td>
</tr>
<tr>
<td>TRANSATTACH</td>
</tr>
<tr>
<td>TSQUEUE</td>
</tr>
</tbody>
</table>

1 See CICS RACF Security Guide.

2 Supported for compatibility with earlier releases.

With dynamic transaction routing, it is not necessary to install transaction definitions in terminal owning regions. A QUERY SECURITY command with a RESTYPE of TRANSATTACH returns the NOTFND condition if the transaction is not installed. Programmers, however, should be aware that the transaction may be routed dynamically.

UPDATE(cvda) enables you to query whether the user has UPDATE authority for the named resource. The cvda values returned by CICS are UPDATABLE and NOTUPDATABLE. UPDATE access authority usually permits destructive use of a resource as, for example, in the case of WRITE, DELETE, or UPDATE commands.

Conditions

INVREQ

RESP2 values:

7 The cvda value is not valid for the LOGMESSAGE.

9 The RESID is invalid or filled with blanks.

10 The external security manager (ESM) is inactive or not present.

Default action: terminate the task abnormally.

LENGERR

RESP2 values:

6 The RESIDLENGTH value is not valid, that is, not in the range 1 through 246.

Default action: terminate the task abnormally.

NOTFND

RESP2 values:

1 The RESID is not valid.

2 The RESTYPE is not valid.

3 The RESID value for RESTYPE (SPCOMMAND) not valid.

5 The RESCLASS is not defined to the external security manager (ESM).

8 The resource is not protected. This is only returned when QUERY SECURITY is used with the RESCLASS option (and never occurs with RESTYPE).

Possible causes include:

• RESCLASS not active.
• No profile found.
• ESM not active.

Default action: terminate the task abnormally.

QIDERR

RESP2 values:

1 An indirect queue name associated with the given RESID is not found.

Default action: terminate the task abnormally.
READ

Read a record from a file.

Conditions: DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCVINREQ, LENGERR, LOADING, LOCKED, NOTAUTH, NOTFND, NOTOPEN, RECORDBUSY, SYSIDERR

Description

READ reads a record from a file on a local or a remote system.

For both UPDATE and non-UPDATE commands, you must identify the record to be retrieved by the record identification field specified in the RIDFLD option. Immediately upon completion of a READ UPDATE command, the RIDFLD data area is available for reuse by the application program.

Data table considerations: When this command reads a CICS-maintained data table, a READ request with UPDATE or RBA is always satisfied by a call to VSAM. A full key read that is neither a generic read nor a READ UPDATE, is satisfied by a reference to the data table if possible. If the record is not found in the table, the source data set is accessed, unless the table is known to be complete, that is, all records in the source are also present in the table (which is the case if loading is finished and none has been rejected by a user exit).

When this command reads a user-maintained data table, only the data table is accessed once loading is complete; the VSAM file is not changed in any way.

When this command reads a coupling-facility data table, only the data table is accessed, even if the table is initially loaded from a VSAM source data set.

Note: If a file that refers to a user-maintained or coupling facility data table is defined with RLSACCESS(YES), the RLS-specific API options CONSISTENT, NOSUSPEND, and REPEATABLE are not supported.

Reading files accessed in RLS mode: When a file is accessed in RLS mode, non-update read requests can specify one of the read integrity options: UNCOMMITTED, CONSISTENT, or REPEATABLE.

If none of these keywords is specified, CICS uses the value specified on the READINTEG parameter of the FILE resource definition, for which the default is UNCOMMITTED.

If you want to use the level of read integrity specified in the READINTEG keyword of the FILE definition, and then you need to change from using a local file to a remote file, or if you change the location of a remote file, ensure that:

- The remote file-owning region supports the read integrity options.
- The FILE definition in the remote system specifies:
 - RLS mode
 - The correct read integrity values for your application.

READ requests that specify the UPDATE keyword, or a CONSISTENT or REPEATABLE read integrity option, (either explicitly or implicitly in the FILE definition) return the LOCKED condition if they reference a record that has a retained lock. The key of a locked record is not returned to the application program. Thus, if an application program specifies GTEQ or GENERIC on the READ request it cannot tell which record key is locked.

If a request specifying read integrity is function-shipped to a member of the CICS family of products that does not support read integrity, the request fails:

- If an ISC link is used, the request receives an ATNI abend.
READ

- If an MRO link is used, the request receives an AXF8 abend.
 The AXF8 abend code indicates that your program has attempted to function-ship a request specifying file control options to a remote CICS region that does not support these options.

Options

CONSISTENT (RLS only)
The record is read with a level of read integrity provided by a VSAM shared lock that lasts for the duration of the request.

If the record is being modified by another task, which therefore holds an exclusive lock, the READ request waits until the update is complete (unless NOSUSPEND is also specified) as follows:

- For a READ request against a non-recoverable file, the READ completes as soon as any VSAM request performing the update completes.
- For a READ request against a recoverable file, the READ request completes when the updating task completes its next syncpoint or rollback.

DEBKEY (blocked BDAM) specifies that deblocking is to occur by key. If neither DEBREC nor DEBKEY is specified, deblocking does not occur.

DEBREC (blocked BDAM) specifies that deblocking is to occur by relative record (relative to zero). If neither DEBREC nor DEBKEY is specified, deblocking does not occur.

EQUAL specifies that the search is satisfied only by a record having the same key (complete or generic) as that specified in the RIDFLD option.

FILE(filename)
specifies the of the file to be accessed.

If SYSID is specified, the data set to which this file refers is assumed to be on a remote system irrespective of whether the name is defined in the FCT. Otherwise, the FCT entry is used to find out whether the data set is on a local or a remote system.

GENERIC (VSAM KSDS, paths and data tables) specifies that the search key is a generic key whose length is specified in the KEYLENGTH option. The search for a record is satisfied when a record is found that has the same starting characters (generic key) as those specified.

GTEQ (VSAM KSDS, paths and data tables) specifies that, if the search for a record having the same key (complete or generic) as that specified in the RIDFLD option is unsuccessful, the first record having a greater key is retrieved.

INTO(data-area)
specifies the data area into which the record retrieved from the data set is to be written.

When INTO is specified, LENGTH must either be specified explicitly or must be capable of being defaulted from the INTO option using the length attribute reference in assembler language, or STG and CSTG in PL/I.

LENGTH must be specified explicitly in OS/VS COBOL and C.

KEYLENGTH(data-value)
specifies the length (halfword binary) of the key that has been specified in the RIDFLD option, except when RBA or RRN is specified, in which case KEYLENGTH is not valid. This option must be specified if GENERIC is specified, and it can be specified whenever a key is specified. However, if the length specified is different from the length defined for the data set and the operation is not generic, the INVREQ condition occurs.

The INVREQ condition also occurs if GENERIC is specified and the KEYLENGTH is not less than that specified in the VSAM definition.

If KEYLENGTH(0) is used with the object of reading the first record in the data set, the GTEQ option must also be specified. If EQUAL is specified either explicitly or by default with KEYLENGTH(0), the results of the READ are unpredictable.

LENGTH(data-area)
specifies the length, as a halfword binary value, of the data area where the record is to be put. On completion of the READ command, the LENGTH parameter contains the actual length of the record.

LENGTH must be specified with the INTO option on READ commands involving variable-length records. It need not be specified for fixed-length records, but its inclusion is recommended because:

- It causes a check to be made that the record being read is not too long for the available data area
- When reading fixed-length records into an area longer than the record being accessed, the LENGERR condition is raised if the LENGTH option is not specified. If the length specified exceeds the file record length, CICS uses the longer length for the move. If the target area in the application program is not large enough, storage is overlaid beyond the target area.

See “LENGTH options” on page 5 for more information about when LENGTH must be specified.

When reading into a target data area longer than the record being read, the contents of the target data area, from the end of the retrieved record to the end of the target data area, are unpredictable.
If you specify the INTO option, the LENGTH argument must be a data area that specifies the largest record the program accepts. If the retrieved record is longer than the value specified in the LENGTH option, the record is truncated to the specified value and the LENGERR condition occurs. In this case, the LENGTH data area is set to the length of the record prior to truncation.

If you specify the SET option, the LENGTH option need not be specified but, if it is, the argument must be a data area.

NOSUSPEND (RLS only)
The request does not wait if the record is locked by VSAM with an active lock, including records locked as the result of a DEADLOCK.

RBA
(VSAM KSDS or ESDS base data sets, or CICS-maintained data tables only, but not paths) specifies that the record identification field specified in the RIDFLD option contains a relative byte address. This option should be used only when reading records from an ESDS base or when reading from a KSDS base and using relative byte addresses instead of keys to identify the records.

You cannot use RBA for:
- User-maintained data tables
- Coupling facility data tables
- KSDS files that hold more than 4GB
- Any KSDS file opened in RLS access mode

REPEATABLE (RLS only)
The record is read with a level of read integrity provided by a VSAM shared lock that lasts for the duration of the unit of work in which the read request is issued.

If the record is being modified by another task, which therefore holds an exclusive lock, the READ request waits until the update is complete (unless NOSUSPEND is also specified) as follows:
- For a recoverable file, the READ request completes when the updating transaction completes its next syncpoint or rollback.
- For a non-recoverable file, the READ completes as soon as the VSAM request performing the update completes.

After the READ request has completed, the record remains locked to the task that issued the READ. Other tasks may continue to read the record but no other task is allowed to update the record until the task that issued the READ performs its next syncpoint or rollback.

RIDFLD(data-area)
specifies the record identification field. The contents can be a key, a relative byte address, or relative record number (for VSAM data sets), or a block reference, a physical key, and a deblocking argument (for BDAM data sets). For a relative byte address or a relative record number, the format of this field must be fullword binary. For a relative byte address, the RIDFLD can be greater than or equal to zero. For a relative record number, the RIDFLD can be greater than or equal to 1.

Immediately upon completion of the command, the RIDFLD data area is available for reuse by the application program, even if UPDATE was specified.

Make sure that the variable specified by RIDFLD is not shorter than the KEYLENGTH specified in this command or, if KEYLENGTH is not specified, the key length of the file you are reading; otherwise, the results are unpredictable.

RRN
(VSAM RRDS) specifies that the record identification field specified in the RIDFLD option contains a relative record number. This option should only be used with files referencing relative record data sets.

SET(ptr-ref)
indicates that CICS is to supply a buffer where the record is read, and specifies the pointer reference that is to contain the address of the retrieved record.

If the DUPKEY condition occurs in assembler language the specified register has not been set. The specified register can be loaded from DFHEITP1.

The pointer reference is valid until the next READ command for the same file or until completion of a corresponding REWRITE, DELETE, or UNLOCK command, or a SYNCPOINT in the case of READ UPDATE SET. If you want to retain the data within the field addressed by the pointer, it should be moved to your own area.

If DATALLOCATION(ANY) is associated with the application program, the address of the data can be above or below the 16MB line.

If DATALLOCATION(BELOW) is associated with the application program, the address of the data is below the 16MB line.

If TASKDATAKEY (USER) is specified for the executing transaction, the data returned is in a user-key; otherwise it is in a CICS-key.

SYSID(systemname)
specifies the name of the system the request is directed to.

If you specify SYSID, and omit both RBA and RRN, you must also specify LENGTH and KEYLENGTH; they cannot be found in the FCT.

TOKEN(data-area)
specifies, as a fullword binary value, a unique identifier for this READ UPDATE request. This is an output value returned by file control to the requesting task, for use in associating a subsequent REWRITE or DELETE (or UNLOCK) request with the record returned on this READ UPDATE request.

TOKEN can be function shipped. However, if a request specifying TOKEN is function shipped to a member of
READ

the CICS family of products that does not recognize this keyword, the request fails.

Note: If you specify TOKEN it implies update.

UNCOMMITTED

The record is read without read integrity.

The current value of the record, as known to VSAM, is returned. No attempt is made to serialize this read request with any concurrent update activity for the same record. The record may be in the process of being updated by another task, and the record data may change later if that update is subsequently backed out.

UPDATE

specifies that the record is to be obtained for updating or (for VSAM and data tables) deletion. If this option is omitted, a read-only operation is assumed.

UPDATE guarantees read integrity. The mechanism used to ensure data integrity depends on the type of file resource:

- For a VSAM file accessed in RLS mode, the record to be updated is locked by the SMSVSAM server.
- For a VSAM file accessed in non-RLS mode, the record to be updated is locked by CICS and, in addition, the control interval containing the record is held in exclusive control by VSAM.
- For a BDAM file, the record to be updated is held in exclusive control by BDAM.
- For a user-maintained data table, the record to be updated is locked by CICS.
- For a CICS-maintained data table, the record to be updated is locked by CICS and, in addition, the control interval containing the record is held in exclusive control by VSAM. The VSAM control interval lock is required because changes to the data table are reflected in the source data set, which is accessed in non-RLS mode.
- For a coupling facility data table using the locking model, the record to be updated is locked by the coupling facility data table server.
- For a coupling facility data table using the contention model, records are not locked, enabling the records to be read for update by more than one task. If a record read for update by one task is then changed by another, the first task is notified, when it issues a REWRITE or DELETE command, by the CHANGED exception condition. If a record read for update by one task is then deleted by another, the first task is notified, when it issues a REWRITE or DELETE command, by the NOTFND condition.

If another task has issued a READ REPEATABLE request against the same record, your READ UPDATE is made to wait until that task reaches SYNCPOINT (unless you issued NOSUSPEND).

Conditions

Note: RESP2 values are not set for files that are on remote systems.

DISABLED

RESP2 values:

50 A file is disabled because it was initially defined as disabled and has not since been enabled.

A file is disabled because it has been disabled by a SET FILE or a CEMT SET FILE command.

Default action: terminate the task abnormally.

DUPKEY

RESP2 values: (VSAM)

140 A record is retrieved by way of an alternate index with the NONUNIQUEKEY attribute, and another alternate index record with the same key follows

In assembler language, if the SET option is being used, the specified register has not been set, but can be loaded from DFHEITP1.

Default action: terminate the task abnormally.

FLENOTFOUND

RESP2 values:

1 The file name supplied in the FILE option cannot be found in the FCT.

Default action: terminate the task abnormally.

ILLOGIC

RESP2 values: (VSAM)

110 A VSAM error occurs that does not fall within one of the other CICS response categories.

(See EIBRCODE in the description of the EXEC interface block, starting on 387.)

For user-maintained data tables, this condition occurs only for a non-UPDATE READ during loading when CICS has attempted to retrieve the record from the source data set.

Default action: terminate the task abnormally.

INVREQ

RESP2 values:

20 READ is not allowed according to the file entry specification in the FCT.

A READ command with the UPDATE option is issued to a file where update operations are not allowed according to the file entry specification in the FCT.
The KEYLENGTH and GENERIC options are specified, and the length specified in the KEYLENGTH option is greater than or equal to the length of a full key.

The KEYLENGTH option is specified (but the GENERIC option is not specified), and the specified length does not equal the length defined for the data set to which this file refers.

Following a READ UPDATE command without TOKEN, another READ UPDATE without TOKEN was issued against the same file without an intervening REWRITE, DELETE, UNLOCK or SYNCPOINT command. This condition may in some cases be raised despite the fact that the first READ UPDATE was not successful, for example because it timed out.

A BDAM key conversion error occurred.

The KEYLENGTH and GENERIC options are specified, and the length specified in the KEYLENGTH option is less than zero.

The command does not conform to the format of READ for a user-maintained or coupling facility data table; for example, if RBA is specified.

A READ to a KSDS file that is being accessed in RLS mode specifies the RBA keyword. RLS mode does not support relative byte address access to KSDS data sets.

CONSISTENT is specified on a READ request to a non-RLS mode file, or to a data table that is specified with RLSACCESS(YES). CONSISTENT is not allowed if the file refers to a data table, even if the file definition specifies RLSACCESS(YES).

REPEATABLE is specified on a READ request to a non-RLS mode file or to a data table that is specified with RLSACCESS(YES). REPEATABLE is not allowed if the file refers to a data table, even if the file definition specifies RLSACCESS(YES).

NOSUSPEND is specified on a READ request to a non-RLS mode file or to a data table that is specified with RLSACCESS(YES). NOSUSPEND is not allowed if the file refers to a data table, even if the file definition specifies RLSACCESS(YES).

An attempt to update a recoverable coupling facility data table has failed because the current unit of work has already updated 1024 recoverable coupling facility data tables. You cannot update more than 1024 recoverable coupling facility data tables within a unit of work.

Default action: terminate the task abnormally.

There is an I/O error during the READ operation. An I/O error is any unusual event that is not covered by a CICS condition.

For VSAM files, IOERR normally indicates a hardware error.

For user-maintained data tables, this condition occurs only for a non-UPDATE READ during loading when CICS has attempted to retrieve the record from the source data set.

For a coupling facility data table, an IOERR indicates a bad response returned from a coupling facility access.

(Further information is available in the EXEC interface block, defined on 387.)

Default action: terminate the task abnormally.

The remote system indicates a failure that does not correspond to a known condition.

Default action: terminate the task abnormally.

Neither the LENGTH option nor the SET option is specified on a READ command for a file with variable-length records or for a BDAM file with variable-length or undefined-format records.

The length of a record read with the INTO option specified exceeds the value specified in the LENGTH option; the record is truncated, and the data area supplied in the LENGTH option is set to the actual length of the record.

An incorrect length is specified for a file with fixed-length records.

Default action: terminate the task abnormally.

The request cannot be satisfied because it is issued against a data table that is still being loaded. The condition can be raised for one of the following reasons:

- The READ specifies a record that has not yet been loaded into a coupling facility data table. Records can be read or modified while a CFDT is loading only if the requested key is within the range of those records already loaded.

The LOADING response can also be returned for a coupling facility data table that has failed during loading. For more information about
what happens if the load for a coupling facility data table fails, see the description of the XDTLC global user exit in the CICS Customization Guide.

- The READ specifies the UPDATE option for a user-maintained data table. A user-maintained data table cannot be modified during loading.
- The READ specifies the GENERIC or GTEQ options for a user-maintained data table. While a UMT is being loaded, you can use read requests with precise keys only.

If your application programs encounter the LOADING condition persistently or too frequently, check that this is not caused by conflicting file definitions that reference the same data set.

Default action: terminate the task abnormally.

NOTOPEN

RESP2 values:

- **60** NOTOPEN (RESP2 60) is returned for one of the following reasons:
 - The requested file is CLOSED and UNENABLED. The CLOSED, UNENABLED state is reached after a CLOSE request has been received against an OPEN ENABLED file and the file is no longer in use. You can also make CLOSED, UNENABLED the initial state, by specifying STATUS(UNENABLED) and OPENTIME(FIRSTREF) on the FILE resource definition. (For BDAM files, you use the FILSTAT parameter of the DFHFCT TYPE=FILE macro.)
 - The requested file is OPEN and in use by other transactions, but a CLOSE request against the file has been received.
 - A READ command is issued against a data set that is quiesced, or is being quiesced, as a result of a SET DSNAME QUIESCED or IMMOQUIESCED command.

This condition does not occur if the request is made to either a CLOSED, ENABLED file or to a CLOSED, DISABLED file. In the first case, the file is opened as part of executing the request. In the second case, the DISABLED condition occurs.

Default action: terminate the task abnormally.

RECORDBUSY

RESP2 values:

- **107** The NOSUSPEND keyword is specified and the record is locked by an active lock (see “Retained and active locks” on page 211).

This condition does not occur if the request is made to either a CLOSED, ENABLED file or to a CLOSED, DISABLED file. In the first case, the file is opened as part of executing the request. In the second case, the DISABLED condition occurs.

Default action: terminate the task abnormally.

NOTAUTH

RESP2 values:

- **101** A resource security check has failed on FILE(filename).

Default action: terminate the task abnormally.

NOTFND

RESP2 values:

- **80** An attempt to retrieve a record based on the search argument provided is unsuccessful.

For data tables, this condition occurs if an attempt to read a record is unsuccessful because there is no entry with the specified key in the data table. This does not mean that there is no such record in the source data set (if the table was created from one); it may be that such a record is present but was either rejected during initial loading by the user exit XDTRD, or was subsequently deleted from the data table.

Default action: terminate the task abnormally.

SYSIDERR

RESP2 values:

- **130** The SYSID option specifies a name that is neither the local system nor a remote system (made known to CICS by defining a CONNECTION). SYSIDERR also occurs when the link to the remote system is closed.

Default action: terminate the task abnormally.

- **131** For a coupling facility data table, the connection to the coupling facility data table server has failed. This could be because the server itself has failed, or the server is available, but CICS has failed to connect to it.

- **132** The READ is issued for a coupling facility data table that no longer exists, probably because of a coupling facility failure, in which case the coupling facility data table server also fails. See the CICS System Definition Guide for information about
Default action: terminate the task abnormally.

Retained and active locks: RECORDBUSY refers to active locks and LOCKED refers to retained locks:

These locks affect READ requests which acquire locks; that is, update requests and requests with read integrity. These are the kinds of READ requests which are referred to in the following bullets. Other READ requests are unaffected by the presence of retained or active locks.

- READ requests for records that have retained locks are always rejected with a LOCKED response.
- READ requests for records that have active locks wait for the lock to be released, except when the NOSUSPEND keyword is specified, in which case CICS returns the RECORDBUSY response.

Examples

The following example shows you how to read a record from a file named MASTER into a specified data area:

```cics
EXEC CICS READ  
  INTO(RECORD)  
  FILE('MASTER')  
  RIDFLD(ACCTNO)
```

The following example shows you how to read a record for update from a VSAM file using a generic key and specifying a greater-or-equal key search.

```cics
EXEC CICS READ  
  INTO(RECORD)  
  LENGTH(RECLEN)  
  FILE('MASTVSAM')  
  RIDFLD(ACCTNO)  
  KEYLENGTH(4)  
  GENERIC  
  GTEQ  
  UPDATE
```
READNEXT

Description

READNEXT can be used repeatedly to read records in sequential order from a file on a local or a remote system. Such a series of sequential read commands is known as a **browse** of the file. A browse can also consist of a sequence of READNEXT and READPREV commands in any order. A browse must be initiated with the STARTBR command, to identify the starting point of the browse, and terminated with the ENDBR command.

You must provide, in the RIDFLD option, a data area that is sufficiently large to contain a complete identifier (full key, RBA, or RRN) of records in the file. This data area can be used both as an output and as an input parameter.

It is used as an output parameter when CICS, on completion of each READNEXT command, places the complete identifier of the record just retrieved into the RIDFLD data area. CICS then holds this identifier to mark the point from which the subsequent READNEXT is to continue.

It may, except for BDAM, also be used as an input parameter. Modifying the RIDFLD before issuing the next READNEXT command causes that command to reposition the browse to the new identifier, from which it continues in the usual way. If the browse was started with the GENERIC option, the modified RIDFLD must be generic. If the browse was started with the GTEQ option, the next record returned is the first record in the data set with a key greater than or equal to the modified RIDFLD.

A READNEXT command following a READPREV, or a STARTBR or RESETBR that specified a ‘last’ key value, is treated as though the RIDFLD value has been modified, and results in a reposition (as above).

Conditions: DUPKEY, ENDFILE, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, LENGERR, LOADING, LOCKED, NOTAUTH, NOTFND, RECORDBUSY, SYSIDERR

Reading files accessed in RLS mode: For files accessed in RLS mode, you can include the UPDATE keyword on the READNEXT request to update some records during the browse. If you specify UPDATE you must also specify TOKEN. You can then update the record by issuing a DELETE or REWRITE command specifying the TOKEN returned on the browse function.

Note: TOKEN without the UPDATE keyword implies UPDATE.

Use of the UPDATE option is subject to the following rules:

- You can specify UPDATE on a READNEXT command only if the file is accessed in RLS mode. If you specify UPDATE for a file accessed in non-RLS mode, CICS returns INVREQ.
- You can specify UPDATE on READNEXT, but not on the STARTBR or RESETBR commands.
- You can intermix UPDATE and non-update requests within the same browse.
- CICS does not preserve the UPDATE option for you from one READNEXT command to the next.

 CICS supports only one TOKEN in a browse sequence, and the TOKEN value on each READNEXT invalidates the previous value.

Locks for UPDATE: Specifying UPDATE on a READNEXT acquires an exclusive lock. The duration of these exclusive locks within a browse depends on the action your application program takes:

- If you decide to DELETE or REWRITE the last record acquired by a READNEXT UPDATE in a browse, using the associated token, the lock remains active as follows:
 - If the file is recoverable, the lock is released at completion of the next syncpoint or rollback.
– If the file is non-recoverable, the lock will be released by the time ENDBR has completed, but might be released earlier.

• If you decide not to update the last record read, CICS frees the exclusive lock when your program either issues another READNEXT or READPREV command, or ends the browse.

--- UNLOCK note ---

The UNLOCK command does not free an exclusive lock held by VSAM against a record acquired by READNEXT UPDATE. An UNLOCK in a browse invalidates the TOKEN returned by the last request.

Locks for read integrity: Specifying one of the read integrity options acquires a shared lock on each READNEXT. The duration of these shared locks with a browse depends on the type of read integrity you specify:

• If you specify CONSISTENT read integrity, the shared lock is held only for the duration of each read request—that is, until the record is returned to your program.

• If you specify REPEATABLE read integrity, the shared lock is held for the duration of the unit of work in which the browse is performed. In this case, your program could acquire a large number of shared locks, which will prevent the granting of exclusive locks for update functions. You should use REPEATABLE read integrity in a browse with caution.

Function shipping READNEXT with UPDATE or read-integrity: If a READNEXT command specifying UPDATE or one of the read-integrity options is function-shipped to a member of the CICS family of products that does not support UPDATE or the read integrity options, the request fails:

• If an ISC link is used, the request receives an ATNI abend.

• If an MRO link is used, the request receives an AXF8 abend.

AXF8 is an abend code, received by the sending side of a function-shipped request. It indicates that an attempt has been made to send a request specifying UPDATE on an MRO link to a CICS region that does not support update or read integrity options.

Read integrity: When a file is accessed in RLS mode, non-update read requests can specify read integrity options: UNCOMMITTED, CONSISTENT, or REPEATABLE.

If you don’t specify any of these keywords, CICS uses the value specified in the READINTEG parameter of the FILE resource definition, for which the default is UNCOMMITTED.

If you want to use the level of read integrity specified in the READINTEG keyword of the FILE definition, and then you need to change from using a local file to a remote file, or if you change the location of a remote file, ensure that:

• The remote file-owning region is at the CICS Transaction Server for OS/390 Release 1 (or later) level.

• The FILE definition in the remote system specifies:
 – RLS mode
 – The correct read integrity values for your application.

Options

CONSISTENT (RLS only)

The record is read with a level of read integrity provided by a VSAM shared lock that lasts for the duration of the request.

If the record is being modified by another task, which therefore holds an exclusive lock, the READNEXT request waits until the update is complete (unless NOSUSPEND is also specified) as follows:

• For a READNEXT request against a non-recoverable file, the READ completes as soon as any VSAM request performing the update completes.

• For a READNEXT request against a recoverable file, the READ request completes when the updating task completes its next syncpoint or rollback.

FILE(filename)

specifies the name of the file to be browsed.

If SYSID is specified, the data set to which this file refers is assumed to be on a remote system irrespective of whether the name is defined in the FCT. Otherwise, the FCT entry is used to find out whether the data set is on a local or a remote system.

INTO(data-area)

specifies the data area into which the record retrieved from the data set is to be written.

KEYLENGTH(data-value)

specifies the length (halfword binary) of the key that has been specified in the RIDFLD option, except when RBA or RRN is specified, in which case KEYLENGTH is not valid.

If the browse was started without the GENERIC option (that is a full key browse) and if the length specified is different from the length defined for the data set, the INVREQ condition occurs.

If the browse was started with the GENERIC option (that is, a generic key browse), and if the length specified is greater than the length specified for the data set, the INVREQ condition occurs.

If GTEQ and GENERIC were specified on the most recent STARTBR or RESETBR command, issuing READNEXT with KEYLENGTH(0) specified repositions the BROWSE at the start of the file. If EQUAL had been
specified, the effect of READNEXT KEYLENGTH(0) would be unpredictable.

For a generic browse, CICS maintains a current key length for the browse. The current key length is initialized to be the value specified as KEYLENGTH on the STARTBR command.

The current key length may be modified by specifying KEYLENGTH on a READNEXT or RESETBR command. If the current key length is changed, this causes the browse to be repositioned. The browse is repositioned to the key whose initial characters match the value specified in the RIDFLD for the current key length.

The current key length is zero after a request that specifies KEYLENGTH(0).

IF KEYLENGTH is omitted on a READNEXT command, the current key length remains the same and the browse continues without repositioning.

If KEYLENGTH is specified on a READNEXT command and is equal to the current key length, this is treated as being no change and the browse is not repositioned. The one exception to this is when KEYLENGTH(0) is specified, which always causes the browse to be repositioned to the beginning of the file.

KEYLENGTH can be specified during a generic browse with a value equal to the full key length. This does not cause the current key length to change and the browse is not repositioned. The ability to specify the full key length during a generic browse is provided to allow requests that specify SYSID to be able to tell the function-shipping transformers how long the key is, so that the transformers can ship the key to the file-owning region.

A browse can be repositioned by modifying the RIDFLD data area. A generic browse is repositioned only if the modification to RIDFLD changes the part of RIDFLD corresponding to the current key length. A consequence of this is that the browse can not be repositioned by modifying the RIDFLD data area if the current key length is zero.

LENGTH(data-area)

specifies the length, as a halfword binary value, of the record to be retrieved. On completion of a retrieval operation, the LENGTH parameter contains the actual length of the retrieved record.

This option must be specified if SYSID is specified. It must also be specified with the INTO option on commands involving variable-length records. It need not be specified for fixed-length records, but its inclusion is recommended because:

- It causes a check to be made that the record being read is not too long for the available data area.
- When browsing fixed-length records into an area longer than the record being accessed, the LENGERR condition is raised if the LENGTH option is not specified. If the length specified exceeds the file record length, CICS uses the longer length for the move. If the target area in the application program is not large enough, storage is overlaid beyond the target area.

See “LENGTH options” on page 5 for more information about when LENGTH must be specified.

When browsing into a target data area longer than the record being read, the contents of the target data area, from the end of the retrieved record to the end of the target data area, are unpredictable.

If you specify the INTO option, the LENGTH argument must be a data area that specifies the largest record the program accepts. If the retrieved record is longer than the value specified in the LENGTH option, the record is truncated to the specified value and the LENGERR condition occurs. In this case, the LENGTH data area is set to the length of the record prior to truncation.

If you specify the SET option, the LENGTH option need not be specified but, if it is, the argument must be a data area.

Note that a file control command issued against a variable-length record in a file defined on the local CICS system fails with a LENGERR condition if a length is not specified. However, if the same command is issued against a file defined on a remote system, the command does not fail. The transformer which passes CICS commands from one CICS region to another has to pass a default value for the length argument if a value is not specified. This is because, if the file is remote, the transformer cannot identify the record as fixed or variable, and it is valid not to pass a length when issuing a request against a fixed-length record.

NOSUSPEND (RLS only)

The request does not wait if the record is locked by VSAM with an active lock, including records locked as the result of a DEADLOCK.

RBA

(VSAM KSDS or ESDS base data sets, or CICS-maintained data tables only, but not paths) specifies that the record identification field specified in the RIDFLD option contains a relative byte address.

This option must be specified when the STARTBR or RESETBR command specified the RBA option.

You cannot use RBA for:

- User-maintained data tables
- Coupling facility data tables
- Any KSDS files opened in RLS access mode
- KSDS files that hold more than 4GB.

REPEATABLE (RLS only)

The record is read with a level of read integrity provided by a VSAM shared lock that lasts for the duration of the unit of work in which the read request is issued.
If the record is being modified by another task, which therefore holds an exclusive lock, the READNEXT request waits until the update is complete (unless NOSUSPEND is also specified) as follows:

- For a recoverable file, the READNEXT request completes when the updating transaction completes its next syncpoint or rollback.
- For a non-recoverable file, the READNEXT completes as soon as the VSAM request performing the update completes.

After the READNEXT request has completed, the record remains locked to the task that issued the READNEXT. Other tasks may continue to read the record but no other task is allowed to update the record until the task that issued the READNEXT performs its next syncpoint or rollback.

REQID(data-value)
specifies as a halfword binary value a unique request identifier for a browse, used to control multiple browse operations on a file. If this option is not specified, a default value of zero is assumed.

RIDFLD(data-area)
specifies the record identification field. The contents can be a key, a relative byte address, or relative record number (for VSAM data sets), or a block reference, physical key, and deblocking argument (for BDAM data sets). For a relative byte address or a relative record number, the format of this field must be fullword binary. For a relative byte address, the RIDFLD can be greater than or equal to zero. For a relative record number, the RIDFLD can be greater than or equal to 1.

Even if the browse is generic, this field should always be large enough to accommodate the complete record identifier. This is because, on completion of the READNEXT command, the field is updated by CICS with the complete identification of the record retrieved.

RRN
(VSAM RRDS) specifies that the record identification field specified in the RIDFLD option contains a relative record number.

SET(ptr-ref)
specifies the pointer reference that is to be set to the address of the retrieved record.

In assembler language, if the DUPKEY condition occurs, the register specified will not have been set, but can be loaded from DFHEITP1.

The pointer reference is valid until the next READNEXT or READPREV command specifying SET for the same browse (REQID) for the same file. The pointer is no longer valid after an ENDBR or SYNCPOINT command. If you want to retain the data within the field addressed by the pointer, you must move it to your own area.

If DATALOCATION(ANY) is associated with the application program, the address of the data can be above or below the 16MB line.

If DATALOCATION(BELOW) is associated with the application program, the address returned in the SET pointer is below the 16MB line.

If TASKDATAKEY(USER) is specified for the running task, the data returned is in user-key storage; otherwise it is in CICS-key storage.

SYSID(systemname)
specifies the name of the system to which the request is directed.

If you specify SYSID, and omit both RBA and RRN, you must also specify LENGTH and KEYLENGTH; they cannot be found in the FCT.

TOKEN(data-area) (RLS only)
Returns, as a fullword binary value, the request identifier for this READNEXT UPDATE request. This is an output value returned by file control to the requesting task, for use in associating a subsequent REWRITE or DELETE (or UNLOCK) request with the record returned on this READNEXT command.

You must specify the returned TOKEN on a subsequent REWRITE or DELETE command to identify the record being rewritten or deleted. You can also specify the value returned by CICS on the TOKEN option on a subsequent UNLOCK command, to identify the token that is being invalidated.

You must specify TOKEN if you specify UPDATE (but UPDATE is assumed if you specify TOKEN without UPDATE).

CICS supports only one active TOKEN at a time for a given REQID. Thus, a TOKEN value remains valid only until the following READNEXT, READPREV, or ENDBR command for this browse, or until a REWRITE, DELETE, or UNLOCK command (whichever is first).

TOKEN can be function shipped. However, if a request specifying TOKEN is function shipped to a member of the CICS family of products that does not recognize this keyword, the request fails.

UNCOMMITTED
The record is read without read integrity. The current data, as known to VSAM, is returned. No attempt is made to serialize this read request with any concurrent update activity for the same record. The record may be being updated by another transaction, therefore the value of the record may change later if that update is subsequently backed out.

UPDATE (RLS only)
Specifies that the record is to be obtained for updating or deletion. If this option and TOKEN are both omitted, read only is assumed.

If you specify UPDATE, you must also specify TOKEN.
Conditions

Note: RESP2 values are not set for files that are on remote systems.

DUPKEY

RESP2 values (VSAM):
140 A record is retrieved by way of an alternate index with the NONUNIQUEKEY attribute, and another alternate index record with the same key follows. It does not occur as a result of a READNEXT command that reads the last of the records having the nonunique key.

In assembler language, if the SET option is being used, the register specified will not have been set, but can be loaded from DFHEITP1.

Default action: terminate the task abnormally.

ENDFILE

RESP2 values:
90 An end-of-file condition is detected during the browse.

Default action: terminate the task abnormally.

FILENOTFOUND

RESP2 values:
1 A file name referred to in the FILE option cannot be found in the FCT.

Default action: terminate the task abnormally.

ILLOGIC

RESP2 values (VSAM):
110 A VSAM error occurs that does not fall within one of the other CICS response categories.

(See EIBRROCODE in the EXEC interface block; starting on 387.)

Default action: terminate the task abnormally.

INVREQ

RESP2 values:
20 The FILE definition does not allow updates.

25 The KEYLENGTH option is specified for a generic browse (that is one where GENERIC was specified on the STARTBR or the last RESETBR) and the value of KEYLENGTH was greater than the full key length.

26 The KEYLENGTH option is specified for a nongeneric browse, and the specified length does not equal the length defined for the data set to which this file refers.

34 The REQID, if any, does not match that of any successful STARTBR command.

37 The type of record identification (for example, key or relative byte address) used to access a data set during the browse is changed by the READNEXT command.

42 The KEYLENGTH option is specified for a generic browse (that is one where GENERIC was specified on the STARTBR or the last RESETBR) and the value of KEYLENGTH was less than zero.

52 CONSISTENT is specified on a READ request to a non-RLS mode file, or to a data table that is specified with RLSACCESS(YES).CONSISTENT is not allowed if the file refers to a data table, even if the file definition specifies RLSACCESS(YES).

53 REPEATABLE is specified on a READ request to a non-RLS mode file, or to a data table that is specified with RLSACCESS(YES).REPEATABLE is not allowed if the file refers to a data table, even if the file definition specifies RLSACCESS(YES).

54 UPDATE is not allowed because the file is not a VSAM file that is accessed in RLS mode.

55 NOSUSPEND is specified on a READ request to a non-RLS mode file, or to a data table that is specified with RLSACCESS(YES).NOSUSPEND is not allowed if the file refers to a data table, even if the file definition specifies RLSACCESS(YES).

Default action: terminate the task abnormally.

IOERR

RESP2 values:
120 There is an I/O error during the READNEXT command. An I/O error is any unusual event that is not covered by a CICS condition.

For VSAM files, IOERR normally indicates a hardware error.

For a coupling facility data table, an IOERR indicates a bad response returned from a coupling facility access.

Further information is available in the EXEC interface block, defined on 387.

Default action: terminate the task abnormally.

ISCVINREQ

RESP2 values:
70 The remote system indicates a failure that does not correspond to a known condition.

Default action: terminate the task abnormally.

LENGERR

RESP2 values:
10 Neither the LENGTH nor the SET option is specified for a file with variable-length records or a BDAM file with undefined-format records.
11 The length of the record read with the INTO option specified exceeds the value specified in the LENGTH option; the record is truncated, and the data area supplied in the LENGTH option is set to the actual length of the record.

13 An incorrect length is specified for a file with fixed-length records.

Default action: terminate the task abnormally.

LOADING

RESP2 values:

104 The read request specifies a record key for a record in a coupling facility data table that is still being loaded, and the key is out of range of the records already loaded. Records can be browsed in a coupling facility data table during loading only if the requested key is within the range of those records already loaded.

The LOADING response can also be returned for a coupling facility data table that has failed during loading. For more information about what happens if the load for a coupling facility data table fails, see the description of the XDTLC global user exit in the CICS Customization Guide.

If your application programs encounter the LOADING condition persistently or too frequently, check that this is not caused by conflicting file definitions that reference the same data set.

LOCKED

RESP2 values:

106 The read request specifies the UPDATE keyword, or one of the read integrity keywords CONSISTENT or REPEATABLE, or the file resource definition specifies read integrity, but VSAM holds a retained lock against the record (see “Retained and active locks”).

The key of the locked record is not returned to your application program. If you handle this condition and control is returned to your program, the browse can continue and retrieve the record following the locked record by issuing another READNEXT request.

The LOCKED condition can also occur for a request to a recoverable CFDT that uses the locking model, if the record being read is locked by a retained lock. See the CICS Recovery and Restart Guide for information about investigating retained locks on records in a coupling facility data table.

Default action: abandon the task with code AEX8.

NOTAUTH

RESP2 values:

101 A resource security check has failed on FILE(filename).

Default action: terminate the task abnormally.

NOTFND

RESP2 values:

80 An attempt to retrieve a record based on the search argument provided is unsuccessful. This may occur if the READNEXT command immediately follows a STARTBR command that specified the key of the last record in the data set (a complete key of X'FF's).

Default action: terminate the task abnormally.

RECORDBUSY

RESP2 values:

107 NOSUSPEND is specified on the request but VSAM holds an active lock against the record, which would cause the request to wait (see “Retained and active locks”).

The key of the locked record is not returned to your application program. If you handle this condition and control is returned to your program, the browse can continue and retrieve the record following the locked record by issuing another READNEXT request.

Default action: abend the task with code AEX9.

SYSIDERR

RESP2 values:

130 The SYSID option specifies a name that is neither the local CICS region nor a remote system (made known to CICS by defining a CONNECTION). SYSIDERR also occurs when the link to the remote system is closed.

131 For a coupling facility data table, the connection to the coupling facility data table server has failed. This could be because the server itself has failed, or the server is available, but CICS has failed to connect to it.

132 The READNEXT is issued against a coupling facility data table that no longer exists, probably because of a coupling facility failure, in which case the coupling facility data table server also fails. See the CICS System Definition Guide for information about restarting a coupling facility data table server and reloading a table.

Default action: terminate the task abnormally.

Retained and active locks: RECORDBUSY refers to active locks, and LOCKED refers to retained locks:

These locks affect READNEXT requests which acquire locks; that is, update requests and requests with read integrity. These are the kinds of READNEXT requests which are referred to in the following bullets. Other READNEXT
requests are unaffected by the presence of retained or active locks.

- **READNEXT** requests for records that have *retained* locks are always rejected with a LOCKED response.

- **READNEXT** requests for records that have *active* locks wait for the lock to be released, except when the NOSUSPEND keyword is specified, in which case CICS returns the RECORDBUSY response.
Read previous record during a file browse; VSAM and data tables only.

```
READPREV --FILE(filename) INTO(data-area) ──UNCOMMITTED ──CONSISTENT ──REPEATABLE ──UPDATE ──TOKEN(data-area) ──LENGTH(data-area)

READPREV --RIDFLD(data-area) ──KEYLENGTH(data-value) ──REQID(data-value) ──SYSID(systemname) ──RBA ──RRN

READPREV --NOSUSPEND
```

Conditions: DUPKEY, ENDFILE, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, LENGERR, LOCKED, NOTAUTH, NOTFND, RECORDBUSY, SYSIDERR

Description

READPREV can be used repeatedly to read records in reverse sequential order from a VSAM file on a local or a remote system.

Such a series of sequential read commands is known as a **browse** of the file. A browse may also consist of a sequence of READNEXT and READPREV commands in any order. A browse must be initiated with the STARTBR command, to identify the start of the browse, and terminated with the ENDBR command.

You must provide, in the RIDFLD option, a data area that is sufficiently large to contain a complete identifier (full key, RBA, or RRN) of records in the file. This data area is used both as an output and as an input parameter.

It is used as an output parameter when CICS, on completion of each READPREV command, places the complete identifier of the record just retrieved into the RIDFLD data area. CICS then holds this identifier to mark the point from which the subsequent READPREV is to continue.

It may also be used as an input parameter. Modifying the RIDFLD before issuing the next READPREV command causes that command to reposition the browse to the new identifier, from which it continues in the usual way. The modified record identifier must always be a full key, RBA, or RRN. A generic key may not be specified, nor may a browse that was started with the GENERIC option include a READPREV command.

If you include a READPREV command immediately following a STARTBR command, your STARTBR command RIDFLD must specify the key of a record that exists on the data set; otherwise the NOTFND condition will occur.

A READPREV command following a READNEXT, or a STARTBR or RESETBR that did not specify a ‘last’ key value, is treated as though the RIDFLD value had been modified and results in a reposition (as above).

Reading files accessed in RLS mode: For files accessed in RLS mode, you can include the UPDATE keyword on the READPREV request to update some records during the browse. If you specify UPDATE you must also specify TOKEN. You can then update the record by issuing a DELETE or REWRITE command specifying the TOKEN returned on the browse function.

Note: TOKEN without the UPDATE keyword implies UPDATE.

Use of the UPDATE option is subject to the following rules:

- You can specify UPDATE on a READPREV command only if the file is accessed in RLS mode. If you specify UPDATE for a file accessed in non-RLS mode, CICS returns INVREQ.
- You can specify UPDATE on READPREV, but not on the STARTBR or RESETBR commands.
- You can intermix UPDATE and non-update requests within the same browse.
- CICS does not preserve the UPDATE option for you from one READPREV command to the next.

CICS supports only one TOKEN in a browse sequence, and the TOKEN value on each READPREV invalidates the previous value.

Locks for UPDATE: Specifying UPDATE on a READPREV acquires an exclusive lock. The duration of these exclusive locks within a browse depends on the action your application program takes:
If you decide to DELETE or REWRITE the last record acquired by a READPREV UPDATE in a browse, using the associated token, the lock remains active as follows:

- If the file is recoverable, the lock is released at completion of the next syncpoint or rollback.
- If the file is non-recoverable, the lock will be released by the time ENDBR has completed, but might be released earlier.

If you decide not to update the last record read, CICS frees the exclusive lock when your program either issues another READNEXT or READPREV command, or ends the browse.

UNLOCK note

The UNLOCK command does *not* free an exclusive lock held by VSAM against a record acquired by READPREV UPDATE. An UNLOCK in a browse invalidates the TOKEN returned by the last request.

Locks for read integrity: Specifying one of the read integrity options acquires a shared lock on each READPREV. The duration of these shared locks with a browse depends on the type of read integrity you specify:

- If you specify CONSISTENT read integrity, the shared lock is held only for the duration of each read request—that is, until the record is returned to your program.
- If you specify REPEATABLE read integrity, the shared lock is held for the duration of the unit of work in which the browse is performed. In this case, your program could acquire a large number of shared locks, which will prevent the granting of exclusive locks for update functions. You should use REPEATABLE read integrity in a browse with caution.

Function shipping READPREV with UPDATE or read-integrity: If a READPREV command specifying UPDATE or one of the read-integrity options is function-shipped to a member of the CICS family of products that does not support UPDATE or the read integrity options, the request fails:

- If an ISC link is used, the request receives an ATNI abend.
- If an MRO link is used, the request receives an AXF8 abend.

AXF8 is an abend code, received by the sending side of a function-shipped request. It indicates that an attempt has been made to send a request specifying UPDATE on an MRO link to a CICS region that does not support update or read integrity options.

Read integrity: When a file is accessed in RLS mode, non-update read requests can specify read integrity options: UNCOMMITTED, CONSISTENT, or REPEATABLE.

If you don’t specify any of these keywords, CICS uses the value specified on the READINTEG parameter of the FILE resource definition, for which the default is UNCOMMITTED.

If you want to use the level of read integrity specified in the READINTEG keyword of the FILE definition, and then you need to change from using a local file to a remote file, or if you change the location of a remote file, ensure that:

- The remote file-owning region is at the CICS Transaction Server for OS/390 Release 1 (or later) level.
- The FILE definition in the remote system specifies:
 - RLS mode
 - The correct read integrity values for your application.

Options

CONSISTENT (RLS only)

The record is read with a level of read integrity provided by a VSAM shared lock that lasts for the duration of the request.

If the record is being modified by another task, which therefore holds an exclusive lock, the READPREV request waits until the update is complete (unless NOSUSPEND is also specified) as follows:

- For a READPREV request against a non-recoverable file, the READPREV completes as soon as any VSAM request performing the update completes.
- For a READPREV request against a recoverable file, the READPREV request completes when the updating task completes its next syncpoint or rollback.

FILE(filename)

specifies the name of the file being browsed.

If SYSID is specified, the data set to which this file refers is assumed to be on a remote system irrespective of whether the name is defined in the file resource definition. Otherwise, the file definition is used to find out whether the data set is on a local or a remote system.

INTO(data-area)

specifies the data area into which the record retrieved from the data set is to be written.

KEYLENGTH(data-value)

specifies the length (halfword binary) of the key that has been specified in the RIDFLD option, except when RBA or RRN is specified, in which case KEYLENGTH is not valid. If the length specified is different from the length defined for the data set, the INVREQ condition occurs.

LENGTH(data-area)

specifies the length, as a halfword binary value, of the record to be retrieved. On completion of a retrieval operation, LENGTH contains the actual length of the retrieved record.
This option must be specified if SYSID is specified. It must also be specified with the INTO option on READPREV commands involving variable-length records. It need not be specified for fixed-length records, but its inclusion is recommended because:

- It causes a check to be made that the record being read is not too long for the available data area.
- When browsing fixed-length records into an area longer than the record being accessed, the LENGERR condition is raised if the LENGTH option is not specified. If the length specified exceeds the file record length, CICS uses the longer length for the move. If the target area in the application program is not large enough, storage is overlaid beyond the target area.

See “LENGTH options” on page 5 for more information about when LENGTH must be specified.

When browsing into a target data area longer than the record being read, the contents of the target data area, from the end of the retrieved record to the end of the target data area, are unpredictable.

If you specify the INTO option, LENGTH specifies the largest record the program accepts. If the retrieved record is longer than the value specified in the LENGTH option, the record is truncated to the specified value and the LENGERR condition occurs. In this case, the LENGTH data area is set to the length of the record prior to truncation.

If you specify the SET option, LENGTH need not be specified.

NOSUSPEND (RLS only)
The request does not wait if the record is locked by VSAM with an active lock, including records locked as the result of a DEADLOCK.

RBA
(VSAM KSDS or ESDS base data sets, or CICS-maintained data tables only, but not paths) specifies that the record identification field specified in the RIDFLD option contains a relative byte address. You must specify this option after any STARTBR or RESETBR command that specified the RBA option.

You cannot use RBA for:

- User-maintained data tables
- Coupling facility data tables
- Any KSDS files opened in RLS access mode
- KSDS files that hold more than 4GB

REPEATABLE (RLS only)
The record is read with a level of read integrity provided by a VSAM shared lock that lasts for the duration of the unit of work in which the read request is issued.

If the record is being modified by another task, which therefore holds an exclusive lock, the READPREV request waits until the update is complete (unless NOSUSPEND is also specified) as follows:

- For a recoverable file, the READPREV request completes when the updating transaction completes its next syncpoint or rollback.
- For a non-recoverable file, the READPREV completes as soon as the VSAM request performing the update completes.

After the READPREV request has completed, the record remains locked to the task that issued the READPREV. Other tasks can continue to read the record, but no other task is allowed to update the record until the task that issued the READPREV performs its next syncpoint or rollback.

REQID(data-value)
specifies as a halfword binary value a unique request identifier for a browse, used to control multiple browse operations on a file. If this option is not specified, a default value of zero is assumed.

RIDFLD(data-area)
specifies the record identification field. The contents can be a key, a relative byte address, or relative record number. For a relative byte address or a relative record number, the format of this field must be fullword binary. For a relative byte address, the RIDFLD can be greater than or equal to zero. For a relative record number, the RIDFLD can be greater than or equal to 1.

On completion of the READPREV command, this field is updated by CICS with the complete identification of the record retrieved.

RRN
(VSAM RRDS) specifies that the record identification field specified in the RIDFLD option contains a relative record number.

SET(ptr-ref)
specifies the pointer reference that is to be set to the address of the retrieved record.

In assembler language, if the DUPKEY condition occurs, the register specified will not have been set, but can be loaded from DFHEITP1.

The pointer reference is valid until the next READPREV or READNEXT command specifying SET for the same browse (REQID) for the same file. The pointer is no longer valid after an ENDBR or SYNCPOINT command. If you want to retain the data within the field addressed by the pointer, you must move it to your own area.

If DATALLOCATION(ANY) is associated with the application program, the address returned in the SET pointer can be above or below the 16MB line.

If DATALLOCATION(BELOW) is associated with the application program, the address returned in the SET pointer is below the 16MB line.

If TASKDATAKEY(USER) is specified for the running task, the data returned is in user-key storage; otherwise it is in CICS-key storage.
READPREV

SYSID(systemname)
specifies the name of the system to which the request is directed.

If you specify SYSID, and omit both RBA and RRN, you must also specify LENGTH and KEYLENGTH.

TOKEN(data-area) (RLS only)
Returns, as a fullword binary value, a unique identifier for this READPREV UPDATE request. This is an output value returned by file control to the requesting task, for use in associating a subsequent REWRITE or DELETE (or UNLOCK) request with the record returned on this READPREV command.

Your application program must specify the returned TOKEN on a subsequent REWRITE or DELETE command to identify the record being rewritten or deleted. Your application program can also specify the returned TOKEN on a subsequent UNLOCK command to identify the token that is being invalidated.

You must specify TOKEN if you specify UPDATE (but UPDATE is assumed if you specify TOKEN without UPDATE).

CICS supports only one active TOKEN at a time for a given REQID. Thus, a TOKEN value remains valid only until the following READNEXT, READPREV, or ENDBR command for this browse, or until a REWRITE, DELETE, or UNLOCK command (whichever is first).

TOKEN can be function shipped. However, if a request specifying TOKEN is function shipped to a member of the CICS family of products that does not recognize this keyword, the request fails.

UNCOMMITTED
The record is read without read integrity. The current data, as known to VSAM, is returned. No attempt is made to serialize this read request with any concurrent update activity for the same record. The record may be being updated by another transaction, therefore the value of the record may change later if that update is subsequently backed out.

UPDATE (RLS only)
Specifies that the record is to be obtained for updating or deletion. If this option and TOKEN are both omitted, read only is assumed.

If you specify UPDATE, you must also specify TOKEN.

Conditions

Note: RESP2 values are not set for files that are on remote systems.

DUPKEY
RESP2 values:

140 A record is retrieved by way of an alternate index with the NONUNIQUEKEY attribute, and another alternate index record with the same key exists.

In assembler language, if the SET option is being used, the specified register has not been set, but can be loaded from DFHEITP1.

Default action: terminate the task abnormally.

ENDFILE
RESP2 values:

90 An end-of-file condition is detected during a browse.

Default action: terminate the task abnormally.

FILENAMEFOUND
RESP2 values:

1 A file name referred to in the FILE option cannot be found in the FCT.

Default action: terminate the task abnormally.

ILLOGIC
RESP2 values (VSAM):

110 A VSAM error occurs that does not fall within one of the other CICS response categories.

(See EIBRCODE in the EXEC interface block, starting on 387.)

Default action: terminate the task abnormally.

INVREQ
RESP2 values:

20 The FILE definition does not allow updates.

24 A READPREV command is issued for a file for which the previous STARTBR or RESETBR command has the GENERIC option.

26 The KEYLENGTH option is specified and the specified length does not equal the length defined for the data set for this file refers to.

37 The type of record identification (for example, key or relative byte address) used to access a data set during the browse is changed.

39 A READPREV is issued for a BDAM file.

41 The REQID, if any, does not match that of any successful STARTBR command.

52 CONSISTENT is not allowed because the file is not a VSAM file that is accessed in RLS mode.

53 REPEATABLE is not allowed because the file is not a VSAM file that is accessed in RLS mode.

54 UPDATE is not allowed because the file is not a VSAM file that is accessed in RLS mode.

55 NOSUSPEND is not allowed because the file is not a VSAM file that is accessed in RLS mode.

Default action: terminate the task abnormally.
IOERR

RESP2 values:

- **120** An I/O error occurred during the browse. An I/O error is any unusual event that is not covered by a CICS condition.

For VSAM files, IOERR normally indicates a hardware error. (Further information is available in the EXEC interface block, defined on 387.)

For a coupling facility data table, an IOERR indicates a bad response returned from a coupling facility access.

Default action: terminate the task abnormally.

ISCINVREQ

RESP2 values:

- **70** The remote system indicates a failure that does not correspond to a known condition.

Default action: terminate the task abnormally.

LENERR

RESP2 values:

- **10** Neither the LENGTH nor the SET option is specified for a file with variable-length records.

- **11** The length of the record read with the INTO option specified exceeds the value specified in the LENGTH option; the record is truncated, and the data area supplied in the LENGTH option is set to the actual length of the record.

- **13** An incorrect length is specified for a file with fixed-length records.

Default action: terminate the task abnormally.

LOCKED

RESP2 values:

- **106** The read request specifies the UPDATE keyword, or one of the read integrity keywords CONSISTENT or REPEATABLE, or the file resource definition specifies read integrity, but VSAM holds a retained lock against the record (see “Retained and active locks” on page 224).

The key of the locked record is not returned to your application program. If you handle this condition and control is returned to your program, the browse can continue and retrieve the record following the locked record by issuing another READPREV request.

The LOCKED condition can also occur for a request to a recoverable CFDT that uses the locking model, if the record being read is locked by a retained lock. See the CICS Recovery and Restart Guide for information about investigating retained locks on records in a coupling facility data table.

Default action: terminate the task abnormally.

NOTAUTH

RESP2 values:

- **101** A resource security check has failed on FILE(filename).

Default action: terminate the task abnormally.

NOTFND

RESP2 values:

- **80** An attempt to retrieve a record based on the search argument provided is unsuccessful. One place where this may occur is where the READPREV command immediately follows a STARTBR or RESETBR command that specified GTEQ and the key of a record that does not exist on the data set.

Default action: terminate the task abnormally.

RECORDBUSY

RESP2 values:

- **107** NOSUSPEND is specified on the request but VSAM holds an active lock against the record, which would cause the request to wait (see “Retained and active locks” on page 224).

The key of the locked record is not returned to your application program. If you handle this condition and control is returned to your program, the browse can continue and retrieve the record following the locked record by issuing another READPREV request.

Default action: abend the task with code AEX9.

SYSIDERR

RESP2 values:

- **130** The SYSID option specifies a name that has not been defined to CICS as a remote system (defined by defining a CONNECTION). SYSIDERR also occurs when the link to the remote system is closed.

- **131** For a coupling facility data table, the connection to the coupling facility data table server has failed. This could be because the server itself has failed, or the server is available, but CICS has failed to connect to it.

- **132** The READPREV is issued against a coupling facility data table that no longer exists, probably because of a coupling facility failure, in which case the coupling facility data table server also fails. See the CICS System Definition Guide for information about restarting a coupling facility data table server and reloading a table.

Default action: terminate the task abnormally.
READPREV

Retained and active locks: RECORDBUSY refers to active locks and LOCKED refers to retained locks:

These locks affect READPREV requests which acquire locks; that is, update requests and requests with read integrity. These are the kinds of READPREV requests which are referred to in the following bullets. Other READPREV requests are unaffected by the presence of retained or active locks.

- READPREV requests for records that have *retained* locks are always rejected with a LOCKED response.
- READPREV requests for records that have *active* locks wait for the lock to be released, except when the NOSUSPEND keyword is specified, in which case CICS returns the RECORDBUSY response.
READQ TD

Read data from the transient data queue.

```
READQ TD QUEUE(name) INTO(data-area) SET(ptr-ref) LENGTH(data-area) SYSID(systemname) NOSUSPEND
```

Conditions: DISABLED, INVREQ, IOERR, ISCINVREQ, LENGERR, LOCKED, NOTAUTH, NOTOPEN, QBUSY, QIDERR, QZERO, SYSIDERR

Description

READQ TD reads transient data from a queue (after which the record is no longer available).

If you are using automatic transaction initiation (ATI) (see the section on ATI in the CICS Application Programming Guide for introductory information) your application should test for the QZERO condition to ensure that termination of an automatically initiated task occurs only when the queue is empty.

If the READQ TD command attempts to access a record in a logically recoverable intrapartition queue that is being written to, or deleted by, another task, and there are no more committed records, the command waits until the queue is no longer being used for output. If, however, the NOSUSPEND option has been specified, or there is an active HANDLE CONDITION for QBUSY, the QBUSY condition is raised.

Options

INTO(data-area) specifies the user data area into which the data read from the transient data queue is to be placed.

LENGTH(data-area) specifies the length, as a halfword binary value, of the record to be read.

If you specify the INTO option, LENGTH specifies the maximum length of data that the program accepts. If the value specified is less than zero, zero is assumed. If the length of the data exceeds the value specified, the data is truncated to that value and the LENGERR condition occurs. On completion of the retrieval operation, the data area is set to the original length of the data record read from the queue.

If you specify the INTO option, LENGTH need not be specified if the length can be generated by the compiler from the INTO variable. See "LENGTH options" on page 5 for more information about when LENGTH must be specified.

NOSUSPEND specifies that if the application program attempts to read from a queue that is already being used for output, the task is not suspended until the queue becomes available. Instead, the QBUSY condition is raised.

Note, however, that if a HANDLE CONDITION for QBUSY is active when the command is executed, this also overrides the default action, and control is passed to the user label supplied in the HANDLE CONDITION. This takes precedence over the NOSUSPEND option but is, of course, negated by either NOHANDLE or RESP. This option only applies to intrapartition queues.

QUEUE(name) specifies the symbolic name (1–4 alphanumeric characters) of the queue to be read from. The name must have been defined in the DCT.

If SYSID is specified, the queue is assumed to be on a remote system irrespective of whether or not the name is defined as remote in the DCT. Otherwise the entry in the DCT is used to find out whether the data set is on a local or a remote system.

SET(ptr-ref) specifies a pointer reference that is to be set to the address of the data read from the queue. CICS acquires an area large enough to hold the record and sets the pointer reference to the address of that area. The area is retained until another transient data command is executed. The pointer reference, unless changed by other commands or statements, is valid until the next READQ TD command or the end of task.

If DATALOCATION(ANY) is associated with the application program, the address of the data can be above or below the 16MB line.

If DATALOCATION(BELOW) is associated with the application program, and the data resides above the 16MB line, the data is copied below the 16MB line, and the address of this copy is returned.

If TASKDATAKEY(USER) is specified for the running task, and storage protection is active, the data returned...
READQ TD

is in a user-key. If TASKDATAKEY(CICS) is specified and storage protection is active, the data returned is in a CICS-key.

SYSID(systemname)
(remote systems only) specifies the name (1–4 characters) of the system to which the request is directed.

Conditions

DISABLED
occurs when the queue has been disabled.
Default action: terminate the task abnormally.

INVREQ
occurs if READQ names an extrapartition queue that has been opened for output. This condition cannot occur for intrapartition queues.
Default action: terminate the task abnormally.

IOERR
occurs when an input/output error occurs and the data record in error is skipped.
This condition occurs as long as the queue can be read; a QZERO condition occurs when the queue cannot be read.
Default action: terminate the task abnormally.

ISCINVREQ
occurs when the remote system indicates a failure that does not correspond to a known condition.
Default action: terminate the task abnormally.

LENGERR
occurs if READQ names an INTO area that cannot hold all the data that is to be returned to the application. The check is made after the XTDIN exit has been invoked.
Default action: terminate the task abnormally.

LOCKED
occurs when the request cannot be performed because use of the queue has been restricted owing to a unit of work failing in-doubt. This can happen on any request for a logically-recoverable queue defined with WAIT(YES) and WAITACTION(REJECT) in the TDQUEUE resource definition.
Specify WAIT(YES) and WAITACTION(QUEUE) in the TDQUEUE resource definition if you want the transaction to wait.
Default action: terminate the task abnormally.

NOTAUTH
occurs when a resource security check has failed on QUEUE(name).
Default action: terminate the task abnormally.

NOTOPEN
occurs if the destination is closed. This condition applies to extrapartition queues only.
Default action: terminate the task abnormally.

QBUSY
occurs if a READQ TD command attempts to access a record in a logically recoverable intrapartition queue that is being written to or is being deleted by another task, and there are no more committed records.
The NOSUSPEND option must be specified, or a HANDLE for the condition must be active, for this condition to be raised.
This condition applies only to intrapartition queues.
Default action: ignore the condition.

QIDERR
occurs if the symbolic destination to be used with READQ TD cannot be found.
Default action: terminate the task abnormally.

QZERO
occurs when the destination (queue) is empty or the end of the queue has been reached.
Default action: terminate the task abnormally.

SYSIDERR
occurs when the SYSID option specifies a name that is neither the local system nor a remote system (made known to CICS by defining a CONNECTION). SYSIDERR also occurs when the link to the remote system is closed.
Default action: terminate the task abnormally.

Examples

The following example shows how to read a record from an intrapartition data set (queue), which in this case is the control system message log (CSML), into a data area specified in the request:

EXEC CICS READQ TD
 QUEUE('CSML')
 INTO(DATA)
 LENGTH(LDATA)

The following example shows how to read a record from an extrapartition data set (queue) having fixed-length records into a data area provided by CICS; the pointer reference specified by the SET option is set to the address of the storage area reserved for the data record. It is assumed that the record length is known.

EXEC CICS READQ TD
 QUEUE(EX1)
 SET(PREF)
READQ TS

Read data from temporary storage queue.

```
READQ TS
  QUEUE(name)
  INTO(data-area)
  LENGTH(data-area)
  NUMITEMS(data-area)
  NEXT
  ITEM(data-value)
  SYSID(systemname)
  SET(ptr-ref)

Conditions: INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOTAUTH, QIDERR, SYSIDERR
```

Note for dynamic transaction routing

Using this command could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the *CICS Application Programming Guide* for more information about transaction affinities.

Description

READQ TS retrieves data from a temporary storage queue in main or auxiliary storage.

Options

- **INTO(data-area)**

 specifies the data area into which the data is to be written. The data area can be any variable, array, or structure.

- **ITEM(data-value)**

 provides a halfword binary value that specifies the item number of the logical record to be retrieved from the queue.

- **LENGTH(data-area)**

 specifies the length, as a halfword binary value, of the record to be read.

 If you specify the INTO option, LENGTH need not be specified if the length can be generated by the compiler from the INTO variable.

 See “LENGTH options” on page 5 for more information about when LENGTH must be specified.

 If you specify INTO, LENGTH defines the maximum length of data that the program accepts. If the value specified is less than zero, zero is assumed. If the length of the data exceeds the value specified, the data is truncated to that value and the LENGERR condition occurs.

 On completion of the retrieval operation, the data area is set to the original length of the data record read from the queue.

 If you specify the SET option, the LENGTH must be specified.

- **NEXT**

 specifies retrieval for the next sequential logical record following the last record retrieved (by any task), or the first record if no previous record has been retrieved.

- **NUMITEMS(data-area)**

 specifies a halfword binary field into which CICS stores a number indicating how many items there are in the queue. This only occurs if the command completes normally.

- **QUEUE(name)**

 specifies the symbolic name (1–8 characters) of the queue to be read from.

- **QNAME(name)**

 an alternative to QUEUE, QNAME specifies the symbolic name (1–16 characters) of the queue to be read from.

- **SET(ptr-ref)**

 specifies the pointer reference that is set to the address of the retrieved data. The pointer reference, unless changed by other commands or statements, is valid until the next READQ TS command or the end of task.

 If the application program is defined with DATALLOCATION(ANY), the address of the data can be above or below the 16MB line. If the application program is defined with DATALLOCATION(BELOW), the address of the data is below the 16MB line.

 If TASKDATAKEY(USER) is specified for the running task, and storage protection is active, the data returned is in a user-key. If TASKDATAKEY(CICS) is specified and storage protection is active, the data returned is in a CICS-key.
READQ TS

SYSID(systemname)
(remote and shared queues only) specifies the system name (1–4 characters) identifying the remote system or shared queue pool to which the request is directed.

Conditions

INVREQ
occurs in either of the following situations:

- the queue was created by CICS internal code.
- the queue name specified consists solely of binary zeroes.

Default action: terminate the task abnormally.

IOERR
occurs when there is an irrecoverable input/output error.
Default action: terminate the task abnormally.

ISCINVREQ
occurs when the remote system indicates a failure that does not correspond to a known condition.
Default action: terminate the task abnormally.

ITEMERR
occurs in any of the following situations:

- The item number specified is invalid (that is, outside the range of item numbers written to the queue).
- An attempt is made to read beyond the end of the queue using the NEXT (default) option.

Default action: terminate the task abnormally.

LENGERR
occurs when the length of the stored data is greater than the value specified by the LENGTH option.
This condition only applies to the INTO option and cannot occur with SET.
Default action: terminate the task abnormally.

NOTAUTH
occurs when a resource security check has failed on QUEUE(name).
Default action: terminate the task abnormally.

QIDERR
occurs when the queue specified cannot be found, either in main or in auxiliary storage.
Default action: terminate the task abnormally.

SYSIDERR
occurs in any of the following situations:

- When the CICS region in which the temporary storage command is executed fails to connect to the TS server managing the TS pool that supports the referenced temporary storage queue. (For example, this can happen if the CICS region is not authorized to access the temporary storage server).
- SYSIDERR can also occur if the temporary storage server has not been started, or because the server has failed (or been stopped) while CICS continues executing.

Default action: terminate the task abnormally.

Examples

The following example shows how to read the first (or only) record from a temporary storage queue into a data area specified in the request; the LENGTH data area is given the value of the length of the record.

```
EXEC CICS READQ TS
  ITEM(1)
  QUEUE(UNIQNAME)
  INTO(DATA)
  LENGTH(LDATA)
```

The following example shows how to read the next record from a temporary storage queue into a data area provided by CICS; the pointer reference specified by the SET option is set to the address of the storage area reserved for the data record, and the LENGTH data area is given the value of the length of the record.

```
EXEC CICS READQ TS
  QUEUE(DESCRIQ)
  SET(PREF)
  LENGTH(LENG)
  NEXT
```
RECEIVE (VTAM default)

Receive data from standard CICS terminal support (BTAM or TCAM) or from a task that is not attached to a terminal.

Conditions: INVREQ, LENGERR, NOTALLOC

Description

This form of the RECEIVE command is used by all CICS-supported terminals for which the other RECEIVE descriptions are not appropriate.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.

RECEIVE (APPC)

Receive data on an APPC mapped conversation.

Conditions: EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

Description

RECEIVE receives data from the conversation partner in an APPC mapped conversation.
RECEIVE (LUTYPE2/LUTYPE3)

Receive data from a 3270-display logical unit (LUTYPE2) or a 3270-printer logical unit (LUTYPE3).

```
RECEIVE INTO(data-area) LEN(data-area) MAXLENGTH(data-value) ASIS

BUFFER NOTRUNCATE
```

Conditions: EOC, INVREQ, LENGERR, TERMERR

Description

RECEIVE receives data from the terminal.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) (and BUFFER has not been specified), you can omit both the INTO and SET options.

RECEIVE (LUTYPE4)

Receive data from an LUTYPE4 logical unit.

```
RECEIVE INTO(data-area) LEN(data-area) MAXLENGTH(data-value) NOTRUNCATE

BUFFER
```

Conditions: EOC, EODS, INBFMH, INVREQ, LENGERR, SIGNAL, TERMERR

Description

RECEIVE receives data from the terminal.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.
RECEIVE (LUTYPE6.1)

Receive data on an LUTYPE6.1 session.

Description

RECEIVE receives data from the conversation partner in an LUTYPE6.1 conversation.

RECEIVE (3270 logical)

Receive data from a 3270 logical unit.

Description

RECEIVE receives data from a terminal.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) (and BUFFER has not been specified), you can omit both the INTO and SET options.
RECEIVE (VTAM)

RECEIVE (3600 pipeline)

Receive initial input data from a 3600 pipeline logical unit. Subsequent RECEIVES for further input data are not allowed.

```
RECEIVE INTO(data-area) LENGTH(data-area) SET(ptr-ref)
```

Conditions: INVREQ, LENGERR, NOTALLOC

Description

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.

RECEIVE (3600-3601)

Receive data from a 3600 (3601) logical unit.

```
RECEIVE INTO(data-area) LENGTH(data-area) SET(ptr-ref)
```

Conditions: EOC, EODS, INBFMH, INVREQ, LENGERR, SIGNAL, TERMERR

Description

RECEIVE receives data from the terminal. This form of RECEIVE also applies to the 3630 plant communication system.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.
RECEIVE (3600-3614)

Receive data from a 3600 (3614) logical unit.

```plaintext
RECEIVE
  INTO(data-area)  LENGTH(data-area)  MAXLENGTH(data-value)  NOTRUNCATE
  SET(ptr-ref)    FLENGTH(data-area)  MAXFLENGTH(data-value) |
```

Conditions: INVREQ, LENGERR, TERMERR

Description

RECEIVE receives data from the terminal.

The data-stream and communication format used between a CICS application program and a 3614 is determined by the 3614. The application program is therefore device dependent when handling 3614 communication.

For further information about designing 3614 application programs for CICS, refer to the IBM 4700/3600/3630 Guide.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.

RECEIVE (3650)

Receive data from 3650 logical units.

```plaintext
RECEIVE
  INTO(data-area)  LENGTH(data-area)  MAXLENGTH(data-value)  NOTRUNCATE
  SET(ptr-ref)    FLENGTH(data-area)  MAXFLENGTH(data-value) |
```

Conditions: EOC, EODS, INBFMH, INVREQ, LENGERR, TERMERR

Description

RECEIVE receives data from the terminal. This form of RECEIVE also applies to the following 3650 devices:

- Interpreter logical unit
- Host conversational (3270) logical unit
- Host conversational (3653) logical unit
- 3650/3680 command processor logical unit

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.
RECEIVE (VTAM)

RECEIVE (3767)

Receive data from a 3767 interactive logical unit.

```
RECEIVE
  INTO(data-area)
  LENGTH(data-area)
  SET(ptr-ref)
  FLENGTH(data-area)
  MAXLENGTH(data-value)
  NOTRUNCATE
  MAXFLENGTH(data-value)
```

Conditions: EOC, INVREQ, LENGERR, SIGNAL, TERMERR

Description

RECEIVE receives data from the terminal. This form of RECEIVE also applies to the 3770 interactive logical unit.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.

RECEIVE (3770)

Receive data from a 3770 batch logical unit.

```
RECEIVE
  INTO(data-area)
  LENGTH(data-area)
  SET(ptr-ref)
  FLENGTH(data-area)
  MAXLENGTH(data-value)
  NOTRUNCATE
  MAXFLENGTH(data-value)
```

Conditions: EOC, EODS, INBFMH, INVREQ, LENGERR, SIGNAL, TERMERR

Description

RECEIVE receives data from the terminal.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.
RECEIVE (3790 full-function or inquiry)

Receive data from a 3790 full-function or inquiry logical unit.

```plaintext
RECEIVE INTO(data-area) LENGTH(data-area)
SET(ptr-ref) FLENGTH(data-area) MAXLENGTH(data-value)
MAXFLENGTH(data-value) NOTRUNCATE
```

Conditions: EOC, EODS, INBFM, INVREQ, LENGERR, SIGNAL, TERMERR

Description

RECEIVE receives data from the terminal. This form of RECEIVE also applies to the following devices:

- 3650/3680 full-function logical unit
- 3770 full-function logical unit

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.
Options

ASIS

specifies that lowercase characters in the 3270 input data stream are not translated to uppercase; this allows the current task to receive a message containing both uppercase and lowercase data.

This option has no effect on the first RECEIVE command of a transaction, because terminal control performs a READ INITIAL and uses the terminal defaults to translate the operation data.

This option has no effect if the screen contains data prior to a transaction being initiated. This data is read and translated in preparation for the next task and the first RECEIVE command in that task retrieves the translated data.

Note: If you are using a katakana terminal, you might see some messages containing mixed English and katakana characters. That is because katakana terminals cannot display mixed-case output. Uppercase characters in the data stream appear as uppercase English characters, but lowercase characters appear as katakana characters. If this happens, ask your system programmer to specify MSGCASE=UPPER in the system initialization parameters so that messages contain uppercase characters only.

BUFFER

specifies that the contents of the 3270 buffer are to be read, beginning at buffer location 1 and continuing until all contents of the buffer have been read. All character and attribute sequences (including nulls) appear in the input data stream in the same order as they appear in the 3270 buffer.

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

For compatibility with earlier releases, SESSION is accepted as a synonym for CONVID. New programs should use CONVID.

If this option is omitted, the principal facility is assumed.

LENGTH(data-area)

specifies the length, as a halfword binary value, of the data received.

If you specify the INTO option, but omit the MAXLENGTH option, the argument must be a data area that specifies the maximum length that the program accepts. If the value specified is less than zero, zero is assumed.

If you specify the SET option, the argument must be a data area. When the data has been received, the data area is set to the length of the data.

MAXLENGTH(data-value)

A fullword alternative to MAXLENGTH.

MAXLENGTH(data-value)

specifies the maximum amount (halfword binary value) of data that CICS is to recover. If INTO is specified, MAXLENGTH overrides the use of LENGTH as an input to CICS. If SET is specified, MAXLENGTH provides a way for the program to limit the amount of data it receives at one time.

If the length of data exceeds the value specified and the NOTRUNCATE option is not present, the data is truncated to that value and the LENGERR condition occurs. The data area specified in the LENGTH option is set to the original length of data.

If the length of data exceeds the value specified and the NOTRUNCATE option is present, CICS retains the remaining data and uses it to satisfy subsequent RECEIVE commands. The data area specified in the LENGTH option is set to the length of data returned.

If this option is omitted, the value indicated in the LENGTH option is assumed.

NOTRUNCATE

specifies that, when the data available exceeds the length requested, the remaining data is not to be discarded but is to be retained for retrieval by subsequent RECEIVE commands.

SESSION(name)

specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used. If this option is omitted, the principal facility for the task is used.

SET(ptr-ref)

specifies the pointer reference that is to be set to the address of the data read from the logical unit or terminal, or the partner transaction. The pointer reference is valid until the next receive command or the end of task.

If DATALLOCATION(ANY) is associated with the application program, the address of the data can be above or below the 16MB line.

If DATALLOCATION(BELOW) is associated with the application program, and the data resides above the 16MB line, the data is copied below the 16MB line, and the address of this copy is returned.
If TASKDATAKEY(USER) is specified for the running task, and storage protection is active, the data returned is in a user-key. If TASKDATAKEY(CICS) is specified and storage protection is active, the data returned is in a CICS-key.

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- CONFFREE
- CONFRECEIVE
- CONFSEND
- FREE
- PENDFREE
- PENDRECEIVE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNCSEND

Conditions

Some of the following conditions may occur in combination with others. CICS checks for these conditions in the following order:

1. **EODS**
2. **INBFMH**
3. **EOC**

If more than one occurs, only the first is passed to the application program. EIBRCODE, however, is set to indicate all the conditions that occurred.

EOC

occurs when a request/response unit (RU) is received with end-of-chain-indicator set. Field EIBEOC also indicates this condition.

Default action: ignore the condition.

EODS (interpreter logical unit only)

occurs when an end-of-data-set indicator is received.

Default action: terminate the task abnormally.

INBFMH

occurs if a request/response unit (RU) contains a function management header (FMH). Field EIBFMH contains this indicator and it should be used in preference to INBFMH. The IGNORE CONDITION command can be used to ignore the condition.

Default action: terminate the task abnormally.

INVREQ

RESP2 values:

- **200** A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

also occurs (RESP2 not set) in any of the following situations:

- The command is used on an APPC conversation that is not using the EXEC CICS interface or that is not a mapped conversation.

Default action: terminate the task abnormally.

LENGERR

occurs if data is discarded by CICS because its length exceeds the maximum the program accepts and the NOTRUNCATE option is not specified.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the RECEIVE command is issued by a transaction that has been started as a nonterminal task by the START command, or if the CONVID value or facility specified in the command does not relate to a conversation owned by the application.

Default action: terminate the task abnormally.

SIGNAL

occurs when an inbound SIGNAL data-flow control command is received from a partner transaction. EIBSIG is always set when an inbound signal is received.

Default action: ignore the condition.

TERMERR

occurs for a session-related or terminal-related error. Any action on that conversation other than a FREE causes an ATCV abend.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.

Chapter 1. CICS API commands
RECEIVE (non-VTAM)

RECEIVE (non-VTAM default)

Receive data from standard CICS terminal support (BTAM or TCAM) or from a task that is not attached to a terminal.

![Diagram of RECEIVE (non-VTAM default)](image)

Conditions: INVREQ, LENGERR, NOTALLOC

Description

This form of the RECEIVE command is used by all CICS-supported terminals for which the other RECEIVE descriptions are not appropriate.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.

RECEIVE (MRO)

Receive data on an MRO conversation.

![Diagram of RECEIVE (MRO)](image)

Conditions: EOC, INBFMH, INVREQ, LENGERR, NOTALLOC, TERMERR

Description

RECEIVE receives data from the conversation partner in an MRO conversation.
RECEIVE (System/3)

Receive data from a System/3.

Conditions: INVREQ, LENGERR

Description

RECEIVE receives data from the terminal. This form of the RECEIVE command also applies to the following devices:

- 2770 data communication system
- 2780 data transmission terminal
- 3660 supermarket scanning system
- 3780 communication terminal

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.

RECEIVE (System/7)

Receive data from a System/7.

Conditions: INVREQ, LENGERR

Description

RECEIVE receives data from the terminal. For a description of running with a System/7, see “CONVERSE (System/7)” on page 55.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.
RECEIVE (non-VTAM)

RECEIVE (2260)

Receive data from a 2260 or 2265 display station.

```
RECEIVE INTO(data-area) LENGTH(data-area) SET(ptr-ref) FLENGTH(data-area) MAXLENGTH(data-value) MAXFLENGTH(data-value) NOTRUNCATE

LEAVEKB
```

Conditions: INVREQ, LENGERR

Description

RECEIVE receives data from the terminal.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.

RECEIVE (2741)

Receive data from a 2741 communication terminal.

```
RECEIVE INTO(data-area) LENGTH(data-area) SET(ptr-ref) FLENGTH(data-area) MAXLENGTH(data-value) MAXFLENGTH(data-value) NOTRUNCATE

LEAVEKB
```

Conditions: INVREQ, LENGERR, RDATT

Description

RECEIVE receives data from the terminal. For more information about using a 2741 communication terminal, see “CONVERSE (2741)” on page 57.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.
RECEIVE (2980)

Receive data from a 2980 general banking terminal system.

```
RECEIVE INTO(data-area) LENGTH(data-area) SET(ptr-ref) FLENGTH(data-area) MAXLENGTH(data-value) MAXFLENGTH(data-value) NOTRUNCATE

PASSBK
```

Conditions: INVREQ, LENGERR, NOPASSBKRD

Description

RECEIVE receives data from the terminal.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.

Passbook control: All input and output requests to the passbook area of a 2980 are dependent on the presence of a passbook. The PASSBK option is used to specify that communication is with a passbook. The conditions NOPASSBKRD (RECEIVE) and NOPASSBKWR (SEND) occur on input and output requests respectively when a passbook is not present. These conditions can be handled by a HANDLE CONDITION command and appropriate handling routines.

If the passbook is present on an input request, the application program generally writes back to the passbook area to update the passbook. If the NOPASSBKWR condition occurs, CICS allows immediate output to the terminal. In a routine for the NOPASSBKWR condition, the application program should send an error message to the journal area of the terminal to inform the 2980 operator of this error condition. To allow the operator to insert the required passbook, CICS causes the transaction to wait 23.5 seconds before continuing.

On regaining control from CICS after sending the error message, the application program can attempt again to update the passbook when it has ensured that the print element is positioned correctly in the passbook area. This is generally accomplished by issuing two carrier returns followed by the number of tabs required to move the print element to the correct position.

If the NOPASSBKWR condition occurs during the second attempt to write to the passbook area, the application program can send another error message or take some alternative action (for example, place the terminal “out of service”). The presence of the Auditor Key on a 2980 Administrative Station Model 2 is controlled by the SEND PASSBK command and may be used in a manner similar to that described above.

Output control: The unit of transmission for a 2980 is called a segment. However, for the passbook and journal areas, CICS allows an application program to send messages that exceed the buffer size. For the passbook area, the maximum length of message is limited to one line of a passbook to avoid spacing (“indexing”) past the bottom of the passbook. For the journal area, the maximum length of message is specified in the LENGTH option of the SEND command.

For example, consider a 2972 buffer size of 48 characters and a 2980 Teller Station Model 4 passbook print area of 100 characters per line. The application program can send a message of 100 characters to this area; CICS segments the message to adjust to the buffer size. The application program must insert the passbook indexing character (X‘25’) as the last character written in one output request to the passbook area. This is done to control passbook indexing and thereby achieve positive control of passbook presence.

If a message contains embedded passbook indexing characters, and segmentation is necessary because of the length of the message, the output is terminated if the passbook spaces beyond the bottom of the passbook; the remaining segments are not printed.
Output to a common buffer: The SEND CBUFF command is used to transmit data to a common buffer. The data is translated to the character set of the receiving 2980 model. If more than one 2980 model type is connected to the 2972 control unit, the lengths are truncated if they exceed the buffer size.

The DFH2980 structure: The DFH2980 structure contains constants that may only be used when writing COBOL or PL/I application programs for the 2980. The structure is obtained by copying DFH2980 into the application program.

For COBOL, DFH2980 is copied into the working-storage section; for PL/I, DFH2980 is included using a %INCLUDE statement.

The station identification is given in the field STATIONID, whose value must be determined by the ASSIGN command. To test whether a normal or alternate station is being used, the STATIONID field is compared with values predefined in DFH2980. The values are:

```
STATION-
STATION_
```

where normal stations. (The break symbol is hyphen (-) for COBOL, and underscore (_) for PL/I.)

The teller identification on a 2980 Teller Station Model 4 is given in the 1-byte character field TELLERID. An ASSIGN command must be used to find out the TELLERID value.

Tab characters (X'0D') must be included in the application program. The number of tabs required to position the print element to the first position of a passbook area is given in the field NUMTAB. An ASSIGN command must be used to find out the NUMTAB value. The value of NUMTAB is specified by the system programmer and may be unique to each terminal.

Other tab characters are inserted as needed to control formatting.

Any of the DFH2980 values TAB-ZERO through TAB-NINE for COBOL and PL/I, may be compared with NUMTAB to find out the number of tab characters that need to be inserted in an output message to get correct positioning of the print element. The tab character is included in DFH2980 as TABCHAR.

Thirty special characters are defined in DFH2980. Twenty-three of these can be referred to by the name SPECCHAR-# or SPECCHAR_# (for American National Standard COBOL or PL/I) where # is an integer (0 through 22). The seven other characters are defined with names that imply their usage, for example, TABCHAR.

Several other characters defined in DFH2980, such as HOLDPCF or TCTTEPCR, are intended for use in application programs using CICS macros, and should not be required in application programs using CICS commands.
RECEIVE (3270 display)

Receive data from a 3270 information display system (BTAM or TCAM).

```
RECEIVE INTO(data-area) LENGTH(data-area)
SET(ptr-ref) MAXLENGTH(data-value)
FLENGTH(data-area) MAXFLENGTH(data-value)
NOTRUNCATE
```

Conditions: INVREQ, LENGERR

Description

RECEIVE receives data from the terminal.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) (and BUFFER has not been specified), you can omit both the INTO and SET options.

RECEIVE (3600 BTAM)

Receive data from a 3600 finance communication system (BTAM) - only valid for remote terminals. This form of the RECEIVE command also applies to the 4700 finance communication system. For more information about using the 3600 or 4700 finance communication system, see “CONVERSE (3600 BTAM)” on page 59 and “BTAM programmable terminals” on page 404.

```
RECEIVE INTO(data-area) LENGTH(data-area)
SET(ptr-ref) MAXLENGTH(data-value)
FLENGTH(data-area) MAXFLENGTH(data-value)
NOTRUNCATE
```

Conditions: INVREQ, LENGERR

Description

RECEIVE receives data from the terminal. For more information about using the 3600 or 4700 finance communication system, see “CONVERSE (3600 BTAM)” on page 59.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.
RECEIVE (non-VTAM)

RECEIVE (3735)

Receive data from a 3735 Programmable Buffered Terminal.

Description

RECEIVE receives data from the terminal. The 3735 Programmable Buffered Terminal may be serviced by CICS in response to terminal-initiated input (automatic answering), or as a result of an automatic (automatic calling) or time-initiated transaction.

For more information about using the 3735 terminal, see “CONVERSE (3735)” on page 61.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.

RECEIVE (3740)

Receive data from a 3740 data entry system.

Description

RECEIVE receives data from the terminal.

In batch mode, many files are exchanged between the 3740 and CICS in a single transmission. The transmission of an input batch must be complete before an output transmission can be started.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) you can omit both the INTO and SET options.
RECEIVE (3790 3270-display)

Receive data from a 3790 (3270-display) logical unit.

Conditions: INVREQ, LENGERR, TERMERR

Description

RECEIVE receives data from the terminal.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID) (and BUFFER has not been specified), you can omit both the INTO and SET options.
Options

If you specify the INTO option, but omit the MAXLENGTH option, the argument must be a data area that specifies the maximum length that the program accepts. If the value specified is less than zero, zero is assumed.

If the length of the data exceeds the value specified, but the NOTRUNCATE option is not specified, the data is truncated to that value and the LENGERR condition occurs. When the data has been received, the data area is set to the original length of the data.

If you specify the SET option, the argument must be a data area. When the data has been received, the data area is set to the length of the data.

For a description of a safe upper limit, see “LENGTH options” on page 5.

ASIS

indicates that output is to be sent in transparent mode (with no recognition of control characters and accepting any of the 256 possible combinations of eight bits as valid transmittable data).

This option has no effect on the first RECEIVE command of a transaction, because terminal control performs a READ INITIAL operation and uses the terminal defaults to translate the data.

This option has no effect if the screen contains data prior to a transaction being initiated. This data is read and translated in preparation for the next task and the first RECEIVE command in that task retrieves the translated data.

Note: If you are using a katakana terminal, you might see some messages containing mixed English and katakana characters. That is because katakana terminals cannot display mixed-case output. Uppercase characters in the data stream appear as uppercase English characters, but lowercase characters appear as katakana characters. If this happens, ask your system programmer to specify MSGCASE=UPPER in the system initialization parameters so that messages contain uppercase characters only.

BUFFER

(not TCAM) specifies that the contents of the 3270 buffer are to be read, beginning at buffer location one and continuing until all contents of the buffer have been read. All character and attribute sequences (including nulls) appear in the input data stream in the same order that they appear in the 3270 buffer.

FLENGTH(data-area)

A fullword alternative to LENGTH.

INTO(data-area)

specifies the receiving field for the data read from the terminal or logical unit, or the application target area receiving the data from the application program connected to the other end of the current conversation.

LEAVEKB

specifies that the keyboard is to remain locked at the completion of the data transfer.

LENGTH(data-area)

specifies the length, as a halfword binary value, of the data transmitted.

If you specify the INTO option, but omit the MAXLENGTH option, the argument must be a data area that specifies the maximum length that the program accepts. If the value specified is less than zero, zero is assumed.

If the length of the data exceeds the value specified, but the NOTRUNCATE option is not specified, the data is truncated to that value and the LENGERR condition occurs. When the data has been received, the data area is set to the original length of the data.

If you specify the SET option, the argument must be a data area. When the data has been received, the data area is set to the length of the data.

For a description of a safe upper limit, see “LENGTH options” on page 5.

MAXLENGTH(data-value)

A fullword alternative to MAXLENGTH.

MAXLENGTH(data-value)

specifies the maximum amount (halfword binary value) of data that CICS is to recover. If INTO is specified, MAXLENGTH overrides the use of LENGTH as an input to CICS. If SET is specified, MAXLENGTH provides a way for the program to limit the amount of data it receives at one time.

If the value specified is less than zero, zero is assumed.

If the length of data exceeds the value specified and the NOTRUNCATE option is not present, the data is truncated to that value and the LENGERR condition occurs. The data area specified in the LENGTH option is set to the original length of data.

If the length of data exceeds the value specified and the NOTRUNCATE option is present, CICS retains the remaining data and uses it to satisfy subsequent RECEIVE commands. The data area specified in the LENGTH option is set to the length of data returned.

If this option is omitted, the value indicated in the LENGTH option is assumed.

NOTRUNCATE

specifies that, when the data available exceeds the length requested, the remaining data is not to be discarded but is to be retained for retrieval by subsequent RECEIVE commands.
RECEIVE (non-VTAM)

PASSBK
specifies that communication is with a passbook.

PSEUDOBIN
specifies that the data being read is to be translated from System/37 pseudobinary representation to hexadecimal.

SESSION(name)
specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used. If this option is omitted, the principal facility for the task is used.

SET(ptr-ref)
specifies a pointer reference that is to be set to the address of data received from the conversation partner in an MRO conversation. The pointer reference is valid until the next receive command or the end of task.

If DATALLOCATION(ANY) is associated with the application program, the address of the data can be above or below the 16MB line.

If DATALLOCATION(BELOW) is associated with the application program, and the data resides above the 16MB line, the data is copied below the 16MB line, and the address of this copy is returned.

If TASKDATAKEY(USER) is specified for the running task, and storage protection is active, the data returned is in a user-key. If TASKDATAKEY(CICS) is specified and storage protection is active, the data returned is in a CICS-key.

STATE(cvda)
gets the state of the current conversation. The cvda values returned by CICS are:

- ALLOCATED
- FREE
- PENDFREE
- RECEIVE
- ROLLBACK
- SEND
- SYNCFREE
- SYNCRECEIVE
- SYNCSEND

Conditions
The following conditions can occur in combination with others. CICS checks for these conditions in the order:

1. INBFMH
2. EOC

If more than one occurs, only the first is passed to the application program. EIBRCODE, however, is set to indicate all the conditions that occurred.

ENDINPT (not TCAM)
occurs when an end-of-input indicator is received.

Default action: terminate the task abnormally.

EOC
occurs when a request/response unit (RU) is received with the end-of-chain indicator set. Field EIBEOC also contains this indicator.

Default action: ignore the condition.

EOF (not TCAM)
occurs when an end-of-file indicator is received.

Default action: terminate the task abnormally.

INBFMH
occurs if a request/response unit (RU) contains a function management header (FMH). Field EIBFMH contains this indicator and it should be used in preference to INBFMH. The IGNORE CONDITION command can be used to ignore the condition.

Default action: terminate the task abnormally.

INVREQ
RESP2 values:

- **200** A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

Default action: terminate the task abnormally.

LENGERR
occurs if data is discarded by CICS because its length exceeds the maximum the program accepts and the NOTRUNCATE option is not specified.

Default action: terminate the task abnormally.

NOPASSBKRD
occurs if no passbook is present.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.

RDATT (not TCAM)
occurs if a RECEIVE command is terminated by the attention (ATTN) key rather than the return key.

Default action: ignore the condition.

TERMERR
occurs for a terminal-related error, such as a session failure. This condition applies to VTAM-connected terminals only.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.
RECEIVE MAP

RECEIVE MAP

Receive screen input into an application data area. For further information about BMS, see the CICS Application Programming Guide.

Conditions: EOC, EODS, INVPSZ, INVPARTN, INVREQ, MAPFAIL, PARTNFAIL, RDATT, UNEXPIN

Note: INPARTN is supported by Standard and full BMS

Description

RECEIVE MAP maps input data from a terminal into a data area in an application program.

Data from certain logical units is not mapped, but is left unaltered. Refer to the appropriate CICS subsystem guide to see if this is true for a particular logical unit.

Following a RECEIVE MAP command, the inbound cursor position is placed in EIBCPOSN, and the terminal attention identifier (AID) placed in EIBAID.

See Appendix K, “BMS macro summary” on page 427 for map definitions.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID), you can omit both the INTO and the SET options.

Options

ASIS

specifies that lowercase characters in the 3270 input data stream are not translated to uppercase; this allows the current task to receive a message containing both uppercase and lowercase data.

This option has no effect on the first RECEIVE command of a transaction, or if the screen contains data prior to a transaction being initiated. For example, if a transaction is initiated by another transaction, and begins by receiving data originally output by that transaction, it cannot suppress uppercase translation on the data. This data is read and translated in preparation for the next task and the first RECEIVE command in that task retrieves the translated data.

Note: If you are using a katakana terminal, you might see some messages containing mixed English and katakana characters. That is because katakana terminals cannot display mixed-case output. Uppercase characters in the data stream appear as uppercase English characters, but lowercase characters appear as katakana characters. If this happens, ask your system programmer to specify MSGCASE=UPPER in the system initialization parameters so that messages contain uppercase characters only.

FROM(data-area)

specifies the data area containing the data to be mapped by a RECEIVE MAP command. This includes the 12-byte prefix generated by the TIOAPFX=YES option on the DFHMDI and DFHMSD BMS map definitions (see pages 441 and 448).

INPARTN(name)

specifies the name (1–2 characters) of the partition in which the terminal operator is expected to enter data. If the terminal operator enters data in some other partition, the INPARTN partition is activated, the keyboard is unlocked for the partition, and an error message is output to any error message partition. This option is ignored if the terminal does not support partitions, or if there is no application partition set.

INTO(data-area)

specifies the data area into which the mapped data is to be written. If this field is not specified, the name defaults to the name of the map suffixed with an I.

LENGTH(data-value)

specifies the length of the data to be formatted as a halfword binary value. It must not exceed the length of the FROM data area, but this should include the length of the 12-byte prefix generated by the TIOAPFX=YES option on the DFHMDI and DFHMSD BMS map definitions (see pages 441 and 448).

For a description of a safe upper limit, see “LENGTH options” on page 5.
RECEIVE MAP

MAP(name)
specifies the name (1–7 characters) of the map to be used.

MAPSET(name)
specifies the unsuffixed name (1–7 characters) of the mapset to be used. The mapset must reside in the CICS program library. The mapset can be defined either by using RDO or by program autoinstall when the mapset is first used. If this option is not specified, the name given in the MAP option is assumed to be that of the mapset.

SET(ptr-ref)
specifies the pointer that is to be set to the address of the 12-byte prefix to the mapped data.

The pointer reference is valid until the next receive command or the end of task.

If DATALOCATION(ANY) is associated with the application program, the address of the data may be above or below the 16MB line.

If DATALOCATION(BELOW) is associated with the application program, and the data resides above the 16MB line, the data is copied below the 16MB line, and the address of this copy is returned.

If TASKDATAKEY(USER) is specified for the running task, and storage protection is active, the data returned is in a user-key. If TASKDATAKEY(CICS) is specified and storage protection is active, the data returned is in a CICS-key.

TERMINAL
specifies that input data is to be read from the terminal that originated the transaction.

Conditions

Some of the following conditions can occur in combination. If more than one occurs, only the first is passed to the application program.

EIBRCODE, however, is set to indicate all the conditions that occurred.

EOC
occurs if the request/response unit (RU) is received with the end-of-chain (EOC) indicator set. It applies only to logical units.

Default action: ignore the condition.

EODS
occurs if no data is received (only an FMH). It applies only to 3770 batch LUs and to 3770 and 3790 batch data interchange LUs.

Default action: terminate the task abnormally.

INVPARTN
occurs if the specified partition is not defined in the partition set associated with the application program.

Default action: terminate the task abnormally.

INVREQ
occurs if a RECEIVE MAP command is issued in a nonterminal task; these tasks do not have a TIOA or a TCTTE.

Default action: terminate the task abnormally.

MAPFAIL
occurs if the data to be mapped has a length of zero or does not contain a set-buffer-address (SBA) sequence. It applies only to 3270 devices. The receiving data area contains the unmapped input data stream. The amount of unmapped data moved to the user's area is limited to the length specified in the LENGTH option. The input map is not set to nulls.

This condition also arises if a program issues a RECEIVE MAP command to which the terminal operator responds by pressing a CLEAR or PA key, or by pressing ENTER or a PF key without entering data.

Default action: terminate the task abnormally.

PARTNFAIL
occurs if the terminal operator attempts to enter data more than three times in a partition other than that specified by the INPARTN option.

Default action: terminate the task abnormally.

RDATT
occurs if a RECEIVE MAP command is terminated by the operator using the ATTN key rather than the RETURN key. It applies only to the 2741 Communications Terminal, and only if 2741 read attention support has been generated for CICS.

Default action: ignore the condition.

UNEXPIN
occurs when unexpected or unrecognized data is received. This only applies to batch data interchange terminals.

Default action: terminate the task abnormally.
RECEIVE MAP MAPPINGDEV

Receive screen input into an application data area, without reference to the principal facility, if any. Terminal characteristics are obtained from the MAPPINGDEV parameter. For further information about BMS, see the CICS Application Programming Guide.

Description
RECEIVE MAP MAPPINGDEV allows the mapping of input data from a 3270 terminal that is not necessarily the principal facility of the transaction.

MAPPINGDEV specifies the name of a 3270 terminal whose BMS characteristics were used to create the input data stream. This may be a terminal from which the data was originally received using a RECEIVE command.

Options

AID(data-value)
- Specifies the one-byte data area containing the value of the 3270 attention identifier (AID) to be used when performing the mapping operation. Usually this will be the value contained in EIBAID following the RECEIVE operation that originally received the datastream from the terminal.

 The value specified is moved into field EIBAID in the EXEC interface block on completion of the operation. No check is made that the AID value specified is valid.

 If AID(data-value) is not specified, then the AID value defaults to X'7D' (the Enter key).

 If the AID byte (either explicitly, or by default) indicates an operation other than CLEAR, PA1, PA2, or PA3, and CURSLOC=YES is specified for the map, then the field containing the cursor is flagged by setting the X'02' bit in its flag byte.

 If the AID (whether specified explicitly, or by default) is the subject of a HANDLE AID command, the specified branch will be taken in the usual way.

CURSOR(data-value)
- Specifies an unsigned halfword binary field containing the cursor position (relative to zero) to be used. Usually this will be the value contained in EIBCPOSN following the RECEIVE operation that originally received the datastream from the terminal.

 The value specified is moved into EIBCPOSN in the EXEC interface block on completion of the operation. No check is made that the CURSOR value specified is valid.

 If CURSOR(data-value) is not specified, then the cursor value defaults to X'0000'.

FROM(data-area)
- Specifies the data area containing the data to be mapped. This must be in the format of a TIOA and must contain a 12-byte prefix.

INTO(data-area)
- Specifies the data area into which the mapped data is to be written. If this field is not specified, the name defaults to the name of the map suffixed with an I.

LENGTH(data-value)
- Specifies the length of the data to be formatted as a halfword binary value. It must not exceed the length of the FROM data area, but this should include the length of the 12-byte prefix generated by the TIOAPFX=YES option on the DFHMDI and DFHMSD BMS map definitions (see pages 441 and 448).

 For a description of a safe upper limit, see “LENGTH options” on page 5.

MAP(name)
- Specifies the name (1–7 characters) of the map to be used.

MAPPINGDEV(data-value)
- Specifies the name of a 3270 terminal whose characteristics match those of the terminal from which the data was originally received using a RECEIVE command.

MAPSET(name)
- Specifies the unsuffixed name (1–7 characters) of the mapset to be used. The mapset must reside in the CICS program library. The mapset can be defined either by using RDO or by program autoinstall when the mapset is first used. If this option is not specified, the name given in the MAP option is assumed to be that of the mapset.
SET(ptr-ref)

specifies the pointer that is to be set to the address of the 12-byte prefix to the mapped data.

The pointer reference is valid until the next RECEIVE or RECEIVE MAP command, or until the end of the transaction, unless FREEMAINed by the application.

If "TASKDATALOC(ANY)" is specified for the running task, the data returned may be above or below the 16MB line.

If "TASKDATALOC(BELOW)" is specified for the running task, the data returned is below the 16MB line.

If "TASKDATAKEY(USER)" is specified for the running task, and storage protection is active, the data returned is in user-key. If "TASKDATAKEY(CICS)" is specified and storage protection is active, the data returned is in CICS-key.

Conditions

Some of the following conditions may occur in combination. If more than one occurs, only the first is passed to the application program.

INVMPSZ
occurs if the specified map is too wide or too long for the terminal.
Default action: terminate the task abnormally.

INVREQ
occurs if the terminal specified by MAPPINGDEV does not exist, does not support BMS, or is not a 3270 printer or display.
Default action: terminate the task abnormally.

MAPFAIL
occurs if the data to be mapped has a length of zero or does not contain a set-buffer-address (SBA) sequence.
Default action: terminate the task abnormally.
RECEIVE PARTN

RECEIVE PARTN

Receive data from an 8775 terminal partition. This command is only available on standard and full BMS. For further information about BMS, see the CICS Application Programming Guide.

```
RECEIVE PARTN(data-area)
```

Standard and full BMS:

```
INTO(data-area) LENGTH(data-value) SET(ptr-ref) ASIS
```

Conditions: EOC, EODS, INVPARTN, INVREQ, LENGERR

Description

RECEIVE PARTN reads data from a partition on an 8775 terminal. It indicates which partition the data came from, and puts the data into the INTO or the SET data area. You can then treat the data as though it had originated from a terminal in base (unpartitioned) state.

Following a RECEIVE PARTN command, the inbound cursor position is placed in EIBCPOSN, and the terminal attention identifier (AID) placed in EIBAID. EIBAID and EIBCPOSN are also updated at task initiation for non-ATI tasks as well as after each terminal control and BMS input.

See Appendix K, “BMS macro summary” on page 427 for map definitions.

If data is to be received, you must specify either the INTO or the SET option. If a RECEIVE is issued purely to detect an attention identifier (AID), you can omit both the INTO and the SET options.

Options

ASIS

specifies that lowercase characters in the 3270 input data stream are not translated to uppercase; this allows the current task to receive a message containing both uppercase and lowercase data.

The ASIS option has no effect on the first RECEIVE command of a transaction, or if the screen contains data prior to a transaction being initiated. For example, if a transaction is initiated by another transaction, and begins by receiving data originally output by that transaction, it cannot suppress uppercase translation on the data. This data is read and translated in preparation for the next task and the first RECEIVE command in that task retrieves the translated data.

Note: If you are using a katakana terminal, you might see some messages containing mixed English and katakana characters. That is because katakana terminals cannot display mixed-case output. Uppercase characters in the data stream appear as uppercase English characters, but lowercase characters appear as katakana characters. If this happens, ask your system programmer to specify MSGCASE=UPPER in the system initialization parameters so that messages contain uppercase characters only.

INTO(data-area)

specifies the area into which the input data stripped of partition controls is to be written. The length of this area must be specified by the LENGTH option. If the area is not large enough to hold the input data, the input data is truncated, and the LENGERR condition raised. The length option data area is set to the length of data received, prior to any truncation.

LENGTH(data-value)

specifies the length of the data to be formatted as a halfword binary value. It must be set to the length of any INTO area prior to the command. After the command, BMS sets the LENGTH option to the length of data received prior to any truncation if the INTO area is too small.

For a description of a safe upper limit, see “LENGTH options” on page 5.

PARTN(data-area)

is set to the name (1–2 characters) of the input partition. The partition can be defined either by using RDO or by program autoinstall when the partition is first used.

SET(ptr-ref)

specifies the pointer that is to be set to the address of the 12-byte prefix to the mapped data. The pointer
reference is valid until the next receive command or the end of task.

If DATALOCATION(ANY) is associated with the application program, the address of the data may be above or below the 16MB line.

If DATALOCATION(BELOW) is associated with the application program, and the data resides above the 16MB line, the data is copied below the 16MB line, and the address of this copy is returned.

If TASKDATAKEY(USER) is specified for the running task, and storage protection is active, the data returned is in a user-key. If TASKDATAKEY(CICS) is specified and storage protection is active, the data returned is in a CICS-key.

Conditions

Some of the following conditions can occur in combination. If more than one occurs, only the first one is passed to the application program.

EOC
occurs if the request/response unit (RU) is received with the end-of-chain (EOC) indicator set. It applies only to logical units.
Default action: ignore the condition.

EODS
occurs if no data is received (only an FMH). It applies only to 3770 batch LUs and to 3770 and 3790 batch data interchange LUs.
Default action: terminate the task abnormally.

INVPARTN
occurs if the specified partition is not defined in the partition set associated with the application program.
Default action: terminate the task abnormally.

INVREQ
occurs if a RECEIVE PARTN command is issued in a nonterminal task; these tasks do not have a TIOA or a TCTTE.
Default action: terminate the task abnormally.

LENGERR
occurs if the INTO area of a RECEIVE PARTN command is not large enough to hold the input data.
Default action: truncate the data to fit within the INTO area.
RELEASE

Release a loaded program, table, or mapset.

```plaintext
RELEASE PROGRAM('name')

Conditions: INVREQ, NOTAUTH, PGMIDERR
```

Note for dynamic transaction routing

Using RELEASE of a program LOADed with HOLD could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the CICS Application Programming Guide for more information about transaction affinities.

Description

RELEASE releases the program, table, or mapset previously loaded by a LOAD command. This means that the issuing task can no longer use the resource unless another LOAD is issued.

If the HOLD option is specified in the LOAD command, the loaded resource is not released at the end of the task. It can only be released by a RELEASE command. This RELEASE command may be issued by the task that loaded the resource or by any other task.

If the HOLD option is not specified in the LOAD command, the loaded resource is released at the end of the task. It may, however, be released before this by the task that loaded the resource issuing a RELEASE command.

Options

PROGRAM('name')

specifies the identifier (1–8 characters) of a program, table, or mapset to be released.

Conditions

INVREQ

RESP2 values:

5 An invalid attempt is made by the program to release itself. A RELEASE command for the program that contains this command is allowed only when a corresponding LOAD command for the program has been issued from the same task, or when a LOAD command with the HOLD option has been issued from another task.

6 The command is issued for a program that is not loaded.

7 The command is issued for a program that was loaded, without the HOLD option, by another task.

17 The program is defined with RELOAD=NO. It must be released by a FREEMAIN rather than a RELEASE command.

30 The program manager domain has not yet been initialized. This is probably due to a release request having been made in a first stage PLT.

Default action: terminate the task abnormally.

NOTAUTH

occurs when a resource security check has failed on PROGRAM('name').

Default action: terminate the task abnormally.

PGMIDERR

RESP2 values:

1 A program, table, or mapset has no entry in the PPT.

2 A program, table, or mapset is disabled.

9 The installed program definition is for a remote program.

Default action: terminate the task abnormally.

Examples

The following example shows how to release an application program, called PROG4, loaded in response to a LOAD command:

```plaintext
EXEC CICS RELEASE PROGRAM('PROG4')
```
RESETBR

Reset start of browse.

Options

EQUAL

specifies that the search is satisfied only by a record having the same key (complete or generic) as that specified in the RIDFLD option.

FILE *(filename)*

(VSAM and data table) specifies the name of the file to be accessed.

If SYSID is specified, the data set to which this file refers is assumed to be on a remote system irrespective of whether the name is defined in the FCT. Otherwise, the FCT entry is used to find out whether the data set is on a local or a remote system.

GENERIC

(VSAM KSDS, path or data table) specifies that the search key is a generic key whose length is specified in the KEYLENGTH option. The search for a record is satisfied when a record is found that has the same starting characters (generic key) as those specified.

GTEQ

(VSAM and data table) specifies that if the search for a record having the same key (complete or generic) as that specified in the RIDFLD option is unsuccessful, the first record having a greater key is retrieved. Use this option only with keyed or RRN.

KEYLENGTH *(data-value)*

specifies the length (halfword binary) of the key that has been specified in the RIDFLD option, except when RBA or RRN is specified, in which case KEYLENGTH is not valid.

This option must be specified if GENERIC is specified, and it can be specified whenever a key is specified. If the length specified is different from the length defined for the data set and the operation is not generic, the INVREQ condition occurs.

Description

RESETBR specifies, during a browse, the record in a file or data table on a local or a remote system, where you want the browse to be repositioned.

When browsing a VSAM file or data table, you can use this command not only to reposition the browse (which can be achieved more simply by modifying the RIDFLD data area on a READNEXT or READPREV command), but also to change its characteristics from those specified on STARTBR, without ending the browse. The characteristics that may be changed are those specified by the GENERIC, GTEQ, and RBA options.

When browsing a BDAM file, you can include this command at any time prior to issuing any other browse command. It is similar to an ENDBR–STARTBR sequence (but with less function), and gives the BDAM user the sort of skip sequential capability that is available to VSAM users through use of the READNEXT command.

If a RESETBR request specifies the precise key at which the browse is to start (that is, it specifies a full key and the EQUAL keyword) the record returned on the following READNEXT (or READPREV) may not be the same as the record specified by the RESETBR for a file opened in VSAM NSR or RLS mode. This can occur because the initial record specified on the RESETBR command can be deleted by another transaction in between the RESETBR completing and a READNEXT or READPREV being issued. In VSAM LSR mode, the initial record cannot be deleted between the RESETBR and the READNEXT.

Conditions: FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, NOTAUTH, NOTFND, SYSIDERR
RESETBR

The INVREQ condition also occurs if a RESETBR command specifies GENERIC, and the KEYLENGTH is not less than that specified in the VSAM definition.

If KEYLENGTH(0) is used with the object of reading the first record in the data set, the GTEQ option must also be specified. If EQUAL is specified either explicitly or by default with KEYLENGTH(0), the results of the STARTBR are unpredictable.

RBA

(VSAM KSDS or ESDS base data sets, or CICS-maintained data tables only, not paths) specifies that the record identification field specified in the RIDFLD option contains a relative byte address. Use this option only when browsing a KSDS and using relative byte addresses instead of keys to identify the records.

You cannot use RBA for:
- User-maintained data tables
- Coupling facility data tables
- KSDS files that hold more than 4GB
- Any KSDS files opened in RLS access mode

REQID(data-value)
specifies as a halfword binary value a unique request identifier for a browse, used to control multiple browse operations on a data set. If this option is not specified, a default value of zero is assumed.

RIDFLD(data-area)
specifies the record identification field. The contents can be a key, a relative byte address, or a relative record number (for VSAM data sets), or a block reference, physical key, and a deblocking argument (for BDAM data sets). For a relative byte address or a relative record number, the format of this field must be fullword binary. For a relative byte address, the RIDFLD can be greater than or equal to zero. For a relative record number, the RIDFLD can be greater than or equal to 1.

For VSAM, a full record id of X’FF’S indicates that the browse is to be positioned at the end of the data set in preparation for a backwards browse using READPREV commands.

RRN

(VSAM RRDS) specifies that the record identification field specified in the RIDFLD option contains a relative record number.

SYSID(systemname)
specifies the name of the system to which the request is directed.

If you specify SYSID, and omit both RBA and RRN, you must also specify KEYLENGTH; it cannot be found in the FCT.

Conditions

Note: RESP2 values are not set for files that are on remote systems.

FILENOTFOUND

RESP2 values:

1 A file name referred to in the FILE option cannot be found in the FCT.

Default action: terminate the task abnormally.

ILLOGIC

RESP2 values VSAM):

110 A VSAM error occurs that does not fall within one of the other CICS response categories.

(See EIBRCODE in the EXEC interface block, starting on 387.)

Default action: terminate the task abnormally.

INVREQ

RESP2 values:

25 The KEYLENGTH and GENERIC options are specified, and the length specified in the KEYLENGTH option is greater than or equal to the length of a full key.

26 The KEYLENGTH option is specified (but the GENERIC option is not specified), and the specified length does not equal the length defined for the data set to which this file refers.

36 TheREQID, if any, does not match that of any successful STARTBR command.

42 The KEYLENGTH and GENERIC options are specified, and the length specified in the KEYLENGTH option is less than zero.

44 The command does not conform to the format of RESETBR for a user-maintained or coupling facility data table; for example, RBA is specified.

51 A RESETBR command to a KSDS file that is being accessed in RLS mode specifies the RBA keyword. RLS mode does not support RBA access to KSDS data sets.

Default action: terminate the task abnormally.

IOERR

RESP2 values:

120 There is an I/O error during the file control operation. An I/O error is any unusual event that is not covered by a CICS condition.

For VSAM files, IOERR normally indicates a hardware error.

(Further information is available in the EXEC interface block, defined on 387.)
For a coupling facility data table, an IOERR indicates a bad response returned from a coupling facility access.

Default action: terminate the task abnormally.

ISCINVREQ

RESP2 values:

| 70 | The remote system indicates a failure that does not correspond to a known condition. |

Default action: terminate the task abnormally.

NOTAUTH

RESP2 values:

| 101 | A resource security check has failed on FILE(filename). |

Default action: terminate the task abnormally.

NOTFND

RESP2 values:

| 80 | An attempt to retrieve a record based on the search argument provided is unsuccessful. |

NOTFND can also occur if a generic RESETBR with KEYLENGTH(0) specifies the EQUAL option.

Default action: terminate the task abnormally.

SYSIDERR

RESP2 values:

130	The SYSID option specifies a name that is neither the local CICS region nor a remote system (as defined by a CONNECTION definition). SYSIDERR also occurs when the link to the remote system is closed
131	For a coupling facility data table, the connection to the coupling facility data table server has failed. This could be because the server itself has failed, or the server is available, but CICS has failed to connect to it.
132	The RESETBR is issued against a coupling facility data table that no longer exists, probably because of a coupling facility failure, in which case the coupling facility data table server also fails. See the CICS System Definition Guide for information about restarting a coupling facility data table server and reloading a table.

Default action: terminate the task abnormally.
RETRIEVE

Retrieve data stored for a task.

```
→ RETRIEVE INTO(data-area) ⌈ LENGTH(data-area) ⌊ RTRANSID(data-area) ⌉ RTERMID(data-area) ⌊
∥ SET(ptr-ref) ⌈ QUEUE(data-area) ⌉ WAIT ⌊
```

Conditions: ENDDATA, ENVDEFERR, INVREQ, IOERR, LENGERR, NOTFND

Note for dynamic transaction routing

Using RETRIEVE with WAIT could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the CICS Application Programming Guide for more information about transaction affinities.

Description

The RETRIEVE command retrieves data stored by expired START commands. It is the only method available for accessing such data.

A task that is not associated with a terminal can access only the single data record associated with the original START command; it does so by issuing a RETRIEVE command. The storage occupied by the data associated with the task is normally released on execution of the RETRIEVE command, or on termination of the task if no RETRIEVE command is executed prior to termination.

If the START command specified ATTACH, the storage is not released. (ASSIGN STARTCODE in such a task returns 'U' rather than 'S' or 'SD').

A task that is associated with a terminal can access all data records associated with all expired START commands having the same transaction identifier and terminal identifier as this task, that is the task issuing the RETRIEVE command; it does so by issuing consecutive RETRIEVE commands. Expired data records are presented to the task on request in expiration-time sequence, starting with any data stored by the command that started the task, and including data from any commands that have expired since the task started. Each data record is retrieved from temporary storage using the REQID of the original START command as the identification of the record in temporary storage.

When all expired data records have been retrieved, the ENDDATA condition occurs. The storage occupied by the single data record associated with a START command is released after the data has been retrieved by a RETRIEVE command; any storage occupied by data that has not been retrieved is released when the CICS system is terminated.

If the retrieved data contains FMHs (Function Management Headers), as specified by the FMH option on the associated START command, field EIBFMH in the EIB is set to X'FF'. If no FMH is present, EIBFMH is set to X'00'.

Options

INTO(data-area)

specifies the user data area into which retrieved data is to be written.

LENGTH(data-area)

specifies a halfword binary value to define the length of the data area the retrieved data is written into.

If you specify the INTO option, the argument must be a data area that specifies the maximum length of data that the program is prepared to handle. If the value specified is less than zero, zero is assumed. If the length of the data exceeds the value specified, the data is truncated to that value and the LENGERR condition occurs. On completion of the retrieval operation, the data area is set to the original length of the data.

If you specify the SET option, the argument must be a data area. On completion of the retrieval operation, the data area is set to the length of the data.

For a description of a safe upper limit, see “LENGTH options” on page 5.

QUEUE(data-area)

specifies the 8-character area for the temporary storage queue name that may be accessed by the transaction issuing the RETRIEVE command.

RTERMID(data-area)

specifies a 4-character area that can be used in the TERMID option of a START command that may be executed subsequently.
RETRIEVE

RTRANSID(_data-area_) specifies a 4-character area that can be used in the TRANSID option of a START command that may be executed subsequently.

SET(_ptr-ref_) specifies the pointer reference to be set to the address of the retrieved data.

- If DATALOCATION(ANY) is associated with the application program, the address of the data may be above or below the 16MB line.
- If DATALOCATION(BELOW) is associated with the application program, and the data resides above the 16MB line, the data is copied below the 16MB line, and the address of this copy is returned.
- If TASKDATAKEY(USER) is specified for the running task, and storage protection is active, the data returned is in a user-key. If TASKDATAKEY(CICS) is specified and storage protection is active, the data returned is in a CICS-key.
- If you use SET you must also include LENGTH.

WAIT specifies that, if all expired data records have already been retrieved, the task is to be put into a wait state until further expired data records become available. Although this means that the ENDDATA condition is not raised at the time the RETRIEVE command is issued, it is raised later if CICS enters shutdown or if the task is subject to deadlock time-out and it waits for longer than the deadlock time-out interval. (See the DTIMOUT option of RDO DEFINE TRANSACTION.)

An attempt to issue RETRIEVE WAIT during shutdown leads to an AICB abend if there is no data record already available to satisfy the request.

If you use WAIT, you must have at least one other option.

Conditions

ENDDATA occurs in any of the following situations:

- No more data is stored for the task issuing a RETRIEVE command. It can be considered a normal end-of-file response when retrieving data records sequentially.
- The RETRIEVE command is issued by a task that is started by a START command that did not specify any of the data options FROM, RTRANSID, RTERMID, or QUEUE.
- The RETRIEVE command is issued by a nonterminal task that was not created as a result of a START command.
- WAIT was specified and the task was waiting for a data record but none became available before the deadlock time-out interval (see the DTIMOUT option of RDO DEFINE TRANSACTION).
- WAIT was specified and the task was waiting when CICS entered shutdown. An attempt to issue RETRIEVE WAIT during shutdown leads to an AICB abend if there is no data record already available to satisfy the request.
- A RETRIEVE command with the WAIT option is issued when no data is available; the task was initiated by a START command that specified an APPC connection or terminal in the TERMID option.

Default action: terminate the task abnormally.

ENVDEFERR occurs when a RETRIEVE command specifies an option not specified by the corresponding START command.

Default action: terminate the task abnormally.

INVREQ occurs if the RETRIEVE command is not valid for processing by CICS.

Default action: terminate the task abnormally.

IOERR occurs if an input/output error occurs during a RETRIEVE operation. The operation can be retried by reissuing the RETRIEVE command.

Default action: terminate the task abnormally.

LENGERR occurs if the length specified is less than the actual length of the stored data.

Default action: terminate the task abnormally.

NOTFND occurs in any of the following situations:

- A RETRIEVE command is issued, but some prior task retrieved the data stored under the request identifier directly through temporary storage requests and then released the data.
- The request identifier associated with the START command is not unique, so when a RETRIEVE command is issued, CICS cannot find the data.

Default action: terminate the task abnormally.

Examples

The following example shows how to retrieve data stored by a START command for the task, and store it in the user-supplied data area called DATAFLD.

```c
EXEC CICS RETRIEVE
  INTO(DATAFLD)
  LENGTH(LENG)
```
The following example shows how to request retrieval of a data record stored for a task into a data area provided by CICS; the pointer reference (PREF) specified by the SET option is set to the address of the storage area reserved for the data record.

```
EXEC CICS RETRIEVE
   SET(PREF)
   LENGTH(LENG)
```
RETURN

Return program control.

```
RETURN
  TRANSID(name)
  COMMAREA(data-area)
  LENGTH(data-value)
  IMMEDIATE

  INPUTMSG(data-area)
  INPUTMSGLEN(data-value)
  ENDACTIVITY
```

Conditions: INVREQ, LENGERR

Description

RETURN returns control from an application program either to an application program at the next higher logical level, or to CICS.

The LENGTH option specifies the length of the data to be passed. The LENGTH value being passed must not be greater than the length of the data area specified in the COMMAREA option. If it is, the results are unpredictable and may result in a LENGERR condition, as described in the section about passing data to other programs in the CICS Application Programming Guide.

The valid range for the COMMAREA length is 0 through 32763 bytes. If the length provided is outside this range, the LENGERR condition occurs. The COMMAREA and IMMEDIATE options can be used only when the RETURN command is returning control to CICS; otherwise, the INVREQ condition occurs.

No resource security checking occurs on the RETURN TRANSID command. However, transaction security checking is still available when CICS attaches the returned transaction.

For information about the use of this command in the CICS BTS environment, see the CICS Business Transaction Services manual.

Options

COMMAREA(data-area) specifies a communication area that is to be made available to the next program that receives control. In a COBOL receiving program, you must give this data area the name DFHCOMMAREA. (See the CICS Application Programming Guide for more information about the CICS COMMAREA.) Because the data area is freed before the next program starts, a copy of the data area is created and a pointer to the copy is passed.

The communication area specified is passed to the next program that runs at the terminal. To ensure that the communication area is passed to the correct program, include the IMMEDIATE option.

This option is valid only on a RETURN command issued by a program at the highest logical level, that is, a program returning control to CICS.

IMMEDIATE ensures that the transaction specified in the TRANSID option is attached as the next transaction regardless of any other transactions enqueued by ATI for this terminal. The next transaction starts immediately and appears to the operator as having been started by terminal data. If the terminal is using bracket protocol, the terminal is also held in bracket. This option is valid only on a RETURN command issued by a program at the highest logical level, that is, a program returning control to CICS.

Note that in a multi region environment, using IMMEDIATE does not affect the transaction definition as this is still found in the terminal-owning region (TOR).

INPUTMSG(data-area) specifies data to be passed either to another transaction, identified by the TRANSID option, or to a calling program in a multiprogram transaction. You can also use INPUTMSG when returning control to CICS from a user-written dynamic transaction routing program, when you might want to modify the initial input.
RETURN

In all cases, the data in the INPUTMSG data area is passed to the first program to issue a RECEIVE command following the RETURN.

See the CICS Application Programming Guide for more information and illustrations about the use of INPUTMSG.

INPUTMSGLEN(data-value)

specifies a halfword binary value to be used with INPUTMSG.

LENGTH(data-value)

specifies a halfword binary value that is the length in bytes of the COMMAREA. For a description of a safe upper limit, see “LENGTH options” on page 5.

TRANSID(name)

specifies the transaction identifier (1–4 characters) to be used with the next input message entered from the terminal with which the task that issued the RETURN command has been associated. The specified name must have been defined as a transaction to CICS.

If TRANSID is specified for a program running on a terminal that is defined with a permanent transaction ID, the terminal’s permanent transaction is initiated next rather than the transaction specified on the RETURN.

If you specify a TRANSID of binary zeros, the transaction identifier for the next program to be associated with the terminal may be determined from subsequent input from the terminal. Issuing a RETURN with a TRANSID of binary zeros and a COMMAREA can cause unpredictable results if the next transaction is not coded to handle the COMMAREA or if it receives a COMMAREA not intended for it.

If you specify TRANSID on a program that is not at the highest level, and there is a subsequent error on COMMAREA or INPUTMSG on the final RETURN, the TRANSID is cleared.

The next transaction identifier is also cleared on an abnormal termination of the transaction.

If IMMEDIATE is specified with this option, control is passed to the transaction specified in the TRANSID option in preference to any transactions enqueued by ATI.

If IMMEDIATE is not specified with this option, an ATI initiated transaction of the same name enqueued to the terminal nullifies this option.

This option is not valid if the transaction issuing the RETURN command is not associated with a terminal, or is associated with an APPC logical unit.

Conditions

INVREQ

RESP2 values:

1. A RETURN command with the TRANSID option is issued in a program that is not associated with a terminal.
2. A RETURN command with the COMMAREA or IMMEDIATE option is issued by a program that is not at the highest logical level.
3. A RETURN command with the TRANSID option is issued in a program that is associated with an APPC logical unit.
4. A RETURN command with the INPUTMSG option is issued for a program that is not associated with a terminal, or that is associated with an APPC logical unit, or an IRC session.
5. A RETURN command is issued with an INPUTMSG option by a program invoked by DPL.

Default action: terminate the task abnormally.

LENGERR

RESP2 values:

1. The COMMAREA length is less than 0 or greater than 32763.
2. The COMMAREA ADDRESS passed was zero, but the commarea length was non-zero.
3. The INPUTMSG LENGTH was less than 0 or greater than 32767.

Default action: terminate the task abnormally.
REWIND COUNTER

Rewind a named counter that has reached its limit (that is, the maximum number has been assigned).

```
REWIND COUNTER(name) ──POOL(name) ──INCREMENT(data-value)
```

Conditions: INVREQ, SUPPRESSED

```
REWIND D COUNTER(name) ──POOL(name) ──INCREMENT(data-area)
```

Conditions: INVREQ, SUPPRESSED

Description

These counter commands reset the current value of the named counter to its defined minimum number. COUNTER operates on fullword counters and DCOUNTER operates on doubleword counters.

For information about specifying fullword and doubleword variables on these named counter commands, see “Argument values” on page 2.

Options

COUNTER(name)

specifies the name of the named counter that is to be reset to its minimum value. The name can be up to 16 alphanumeric characters. If name is a variable that contains a name that is less than 16 characters, the name must be padded with trailing blanks.

DCOUNTER(name)

specifies the name of the named counter that is to be reset to its minimum value. The name can be up to 16 alphanumeric characters. If name is a variable that contains a name that is less than 16 characters, the name must be padded with trailing blanks.

INCREMENT(data-value)

specifies, as a fullword signed binary value (doubleword unsigned binary value for DCOUNTER), an increment to be used in determining whether the named counter is in a valid state to be reset. If a previous GET command (which did not specify the REDUCE option) specified an increment that caused the GET command to fail, specify the same increment on the REWIND. The named counter server applies the increment before testing whether the counter is in a counter-at-limit condition.

See the the INCREMENT option on the GET command for more details.

POOL(poolname)

specifies an 8-character string to be used as a pool selection parameter to select the pool in which the named counter resides. The string can be a logical pool name, or the actual pool name.

Valid characters for the pool selector string are A through Z, 0 through 9, $ @ # and _ (underscore). If name is a variable that contains a name that is less than 8 characters, the name must be padded with trailing blanks.

This parameter is optional. If you omit the name of the pool, a pool selector value of 8 blanks is assumed.

If there is no matching entry in the DFHNCOPT options table, CICS uses the name specified on the NCPLDFT system initialization parameter, which specifies the default named counter pool.

For information about generating a named counter options table using the DFHNCO macro, see the CICS System Definition Guide.

Conditions

INVREQ

RESP2 values:

- **201** Named counter not found.
- **301** The server has reported an error code that is not understood by the named counter interface. Generally, this is not possible unless the interface load module, DFHNCIF, is at a lower maintenance or release level than the server itself.
- **303** An unexpected error, such as structure failure or loss of connectivity, has occurred on a macro used to access the coupling facility. Further information can be found in message DFHNC0441 in the CICS job log.
304 The pool selection parameter specified in the program cannot be resolved to a valid server name using the current options table.

305 The interface is unable to establish a connection to the server for the selected named counter pool. Further information can be found in an AXM services message (AXMSCnnnn) in the CICS job log.

306 An abend occurred during server processing of a request. Further information can be found in a message in the CICS job log and the server job log.

308 The DFHNCOPT options table module, required for resolving a pool name, could not be loaded.

309 During processing of the options table, the named counter interface encountered an unknown entry format. Either the options table is not correctly generated, or the DFHNCIF interface load module is not at the same release level as the options table.

310 An options table entry matching the given pool name specified a user exit program, but the user exit program is not link-edited with the options table and cannot be loaded.

403 The POOL parameter contains invalid characters or embedded spaces.

404 The COUNTER parameter contains invalid characters or embedded spaces.

406 The INCREMENT value is invalid. The value specified cannot be greater than the total range of the counter ((maximum value − minimum value) + 1).

Default action: terminate the task abnormally.

SUPPRESSED

RESP2 values:

102 The named counter has not yet reached its limit (that is, the current value is not equal to the maximum value plus 1, giving the counter-at-limit condition). This error condition is returned if the named counter is not at its limit even after applying any specified increment.

Default action: terminate the task abnormally.
REWRITE

Update a record in a file.

```
REWRITE FILE(filename) TOKEN(data-area) FROM(data-area) LENGTH(data-value)
```

Conditions: CHANGED, DUPREC, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, LENGERR, LOCKED, NOSPACE, NOTAUTH, NOTFND, RECORDBUSY, SYSIDERR

Description

REWRITE updates a record in a file on a local or a remote system. You must always precede this command with a read with the UPDATE option.

For VSAM data sets, you must not change the key field in the record.

When this command is used to update a record in a CICS-maintained data table, the update is made to both the source VSAM KSDS and the in-memory data table. The details of the command for a CICS-maintained table are the same as for a VSAM KSDS.

When this command is used to update a record in a user-maintained data table, the update is made to the in-memory data table.

When this command is used to update records in a coupling facility data table, the update is made only to the data table in the coupling facility.

Options

FILE(filename)
specifies the file to be accessed.
If SYSID is specified, the data set to which this file refers is assumed to be on a remote system irrespective of whether the name is defined in the FCT. Otherwise, the FCT entry is used to find out whether the data set is on a local or a remote system.

FROM(data-area)
specifies the record that is to be written to the data set referred to by this file.

LENGTH(data-value)
specifies the actual length, as a halfword binary value, of the record to be written.
This option must be specified if SYSID is specified.
This option must also be specified for a file defined as containing variable-length records. It need not be specified if the file contains fixed-length records. You are recommended to include it, however, because it causes a check to be made to ensure that the length of data being written is equal to that defined for the data set. If the lengths are not equal, the LENGERR condition occurs.

NOSUSPEND (RLS only)
The request does not wait if VSAM is holding an active lock against the record, including records locked as the result of a DEADLOCK.

Generally, you should not need this option because, for example, when re-writing a record to a base-only data set, the active lock was acquired when the task issued the READ UPDATE.

However, lock contention can occur if the update involves changes made in RLS mode to records in a VSAM data set that has one or more alternate indexes, and an alternate index is defined with unique keys.

SYSID(systemname)
specifies the name of the system to which the request is directed.

TOKEN(data-area)
specifies as a fullword binary value a unique request identifier for a REWRITE, used to associate it with a previous READ, READNEXT, or READPREV command that specified UPDATE.

TOKEN can be function shipped. However, if a request specifying TOKEN is function shipped to a member of the CICS family of products that does not support the TOKEN option, the request fails:

Conditions

Note: RESP2 values are not set for files that are on remote systems.

| CHANGED |
| RESP2 values: |
A REWRITE command is issued for a file that is a defined as a coupling facility data table using the contention update model and the record has been changed since the application program read it for for update. To successfully update the record, repeat the read for update to get the latest version of the record, re-apply the change, and try the rewrite again.

Default action: terminate the task abnormally.

DUPREC

RESP2 values:

150 An attempt is made to rewrite a record to a data set whose upgrade set has an alternate index with the UNIQUEKEY attribute, if the corresponding alternate key already exists in the alternate index.

Default action: terminate the task abnormally.

FILENOTFOUND

RESP2 values:

1 A file name referred to in the FILE option cannot be found in the FCT.

Default action: terminate the task abnormally.

ILLOGIC

RESP2 values: (VSAM)

110 A VSAM error occurs that does not fall within one of the other CICS response categories.

(See EIBRCODE in the EXEC interface block; refer to Appendix A, “EXEC interface block” on page 387 for details.)

Default action: terminate the task abnormally.

INVREQ

RESP2 values:

30 A REWRITE command is issued without a token and no previous READ for UPDATE (also without a token) can be found.

A possible reason for the previous READ for UPDATE not being found is that it failed for some reason, and the failure has not been correctly handled or has been ignored.

46 A REWRITE command has attempted to change the length of a BDAM variable length record or block.

47 A REWRITE instruction includes a token whose value cannot be matched against any token in use for an existing read for UPDATE request.

55 NOSUSPEND is not allowed because the file is not a VSAM file that is accessed in RLS mode.

56 An attempt to update a recoverable coupling facility data table has failed because the current unit of work has already updated 1024 recoverable coupling facility data tables. You cannot update more than 1024 recoverable coupling facility data tables within a unit of work

Default action: terminate the task abnormally.

IOERR

RESP2 values:

120 An I/O error occurred during the file control operation. An I/O error is any unusual event that is not covered by a CICS condition.

For VSAM files, IOERR normally indicates a hardware error. (Further information is available in the EXEC interface block; refer to Appendix A, “EXEC interface block” on page 387 for details.)

For a coupling facility data table, an IOERR indicates a bad response returned from a coupling facility access.

Default action: terminate the task abnormally.

ISCINVREQ

RESP2 values:

70 The remote system indicates a failure that does not correspond to a known condition.

Default action: terminate the task abnormally.

LENGERR

RESP2 values:

10 The LENGTH option is not specified for a file with variable-length records, or for a BDAM file with undefined format records.

12 The length specified exceeds the maximum record size (of the source data set for a data-table); the record is truncated.

14 An incorrect length is specified for a file with fixed-length records.

Default action: terminate the task abnormally.

NOTFND

RESP2 values:

80 For user-maintained data tables, this condition occurs when an attempt to REWRITE a record has failed because the REWRITE is associated with a READ UPDATE request for a record that this transaction has deleted (using DELETE with RIDFLD) after it was read for update. This may be caused by a logic error in the application program.

This condition can also occur when a REWRITE command is issued to a coupling facility data table using the contention model and the record has been deleted since it was read for update.

Default action: terminate the task abnormally.
LOCKED
RESP2 values:

106 Attempt has been made to update a record, but a retained lock exists against a unique alternate key that is involved in the request.

Default action: abend the task with code AEX8.

NOSPACE
RESP2 values:

100 No space is available on the direct access device for adding the updated record to the data set.

102 The maximum number of records specified for a recoverable coupling facility data table has been exceeded. This can occur on a rewrite operation because an extra record is required in the coupling facility data table for recovery purposes until the update has been committed.

103 For user-maintained data tables, this condition occurs if CICS is unable to get sufficient storage in the CICS address space to store the updated data table entry.

108 For coupling facility data tables, this condition occurs if there is insufficient space in the coupling facility data table pool to store the updated record.

Default action: terminate the task abnormally.

NOTAUTH
RESP2 values:

101 A resource security check has failed on FILE(filename).

Default action: terminate the task abnormally.

RECORDBUSY
RESP2 values:

107 NOSUSPEND is specified but VSAM holds an active lock against a unique alternate index key that is involved in the request, which would cause the request to wait. (See the note about active and retained locks below.)

Default action: abend the task with code AEX9.

SYSIDERR
RESP2 values:

130 The SYSID option specifies a name that is neither the local system nor a remote system (made known to CICS by defining a CONNECTION). SYSIDERR also occurs when the link to the remote system is closed.

131 For a coupling facility data table, the connection to the coupling facility data table server has failed. This could be because the server itself has failed, or the server is available, but CICS has failed to connect to it.

132 The REWRITE is issued against a coupling facility data table that no longer exists, probably because of a coupling facility failure, in which case the coupling facility data table server also fails. See the CICS System Definition Guide for information about restarting a coupling facility data table server and reloading a table.

Default action: terminate the task abnormally.

Note: RECORDBUSY refers to active locks and LOCKED refers to retained locks:
- REWRITE requests for records that have retained locks are always rejected with a LOCKED response.
- REWRITE requests for records that have active locks wait for the lock to be released, except when the NOSUSPEND keyword is specified, in which case CICS returns the RECORDBUSY response.

Examples

For example:

```
EXEC CICS REWRITE
  FROM(RECORD)
  FILE('MASTER')
  TOKEN(APTOK)
```
ROUTE

ROUTE

Route a BMS message. (This command is only available on full BMS. The CICS Application Programming Guide has further information about BMS.)

Description

ROUTE routes a BMS logical message to one or more terminals or terminal operators.

The default is INTERVAL(0), but for C the default is AFTER HOURS(0) MINUTES(0) SECONDS(0).

Options

AFTER

specifies the amount of time to elapse before the route.

There are two ways to enter the time under AFTER and AT.

1. A combination of at least two of HOURS(0–99), MINUTES(0–59), and SECONDS(0–59). HOURS(1) SECONDS(3) would mean one hour and three seconds (the minutes default to zero).

2. As one of HOURS(0–99), MINUTES(0–5999), or SECONDS(0–35999). HOURS(1) means one hour. MINUTES(62) means one hour and two minutes. SECONDS(3723) means one hour, two minutes, and three seconds.

AT

specifies the time of the route. For the ways to enter the time, see the AFTER option.

ERRTERM(name)

specifies the name of the terminal to be notified if the message is deleted because it is undeliverable. The message number, title identification, and destination are indicated. If no name is specified, the originating terminal is assumed.

LIST(data-area)

OPCLASS(data-area)

REQID(name)

LDC(name)

NLEOM

This option is effective only if PRGDLAY has been specified in the system initialization parameters.

HOURS(data-value)

specifies a fullword binary value in the range 0–99. This is a suboption of the AFTER and AT options. For its use and meaning, see the AFTER option.

INTERVAL(hhmmss)

specifies the interval of time after which the data is to be transmitted to the terminals specified in the ROUTE command. The mm and ss are in the range 0–59.

When using the C language, you are recommended to use the AFTER/AT HOURS, MINUTES, and SECONDS options as C does not provide a packed decimal data type. You may use INTERVAL, but if the value specified is not an integer constant, the application is responsible for ensuring that the value passed to CICS is in packed decimal format.

LDC(name) — logical units only

specifies a 2-character mnemonic to be used to determine the logical device code (LDC) to be transmitted in the FMH to the logical unit. The mnemonic identifies an LDC entry defined by the DFHTCT TYPE=LDC macro.

When an LDC is specified, BMS uses the device type, the page size, and the page status associated with the LDC mnemonic to format the message. These values are taken from the extended local LDC table for the LU, if it has one. If the LU has only a local (unextended) LDC table, the values are taken from the system LDC table. The numeric value of the LDC is obtained from the local LDC table, unless this is an unextended table and...
the value is not specified, in which case it is taken from
the system table.
If the LDC option is omitted, the LDC mnemonic
specified in DFHMSD is used; see “DFHMSD” on
page 443 for further details. If the LDC option has also
been omitted from DFHMSD, the action depends on the
type of logical unit, as follows:

3601 LU
The first entry in the local or extended local
LDC table is used, if there is one. If a
default cannot be obtained in this way, a
null LDC numeric value (X'00') is used.
The page size used is the value that is
specified by the RDO TYPETERM options
PAGESIZE or ALTPAGE, or (1,40) if such a
value is not specified.

LUTYPE4 LU, batch LU, or batch data interchange
LU
The local LDC table is not used to supply a
default LDC; instead, the message is
directed to the LU console. (Here, LU
console means any medium on which the
LU elects to receive such messages. For a
batch data interchange LU, this does not
imply sending an LDC in an FMH). The
page size is obtained in the manner
described for the 3601 LU.

For message routing, the LDC option of the ROUTE
command takes precedence over all other sources. If
this option is omitted and a route list is specified (LIST
option), the LDC mnemonic in the route list is used; if
the route list contains no LDC mnemonic, or no route list
is specified, a default LDC is chosen as described
above.

LIST(data-area)
specifies the data area that contains a list of terminals
and operators to which data is to be directed. If this
option is omitted, all terminals supported by BMS receive
the data (unless the OPCLASS option is in effect). See
the CICS Application Programming Guide for the format
of the route list.

MINUTES(data-value)
specifies a fullword binary value in the range 0–59, when
HOURS or SECONDS are also specified, or 0–5999
when MINUTES is the only option specified. This is a
suboption of the AFTER and AT options. For its use and
meaning, see the AFTER option.

NLEOM
specifies that data for a 3270 printer or a 3275 display
with the printer adapter feature should be built with
blanks and new-line (NL) characters, and that an
end-of-message (EM) character should be placed at the
end of the data. As the data is printed, each NL
character causes printing to continue on the next line,
and the EM character terminates printing.

The option is ignored if the device receiving the
message (direct or routed) is not one of those mentioned
above.
If this option is used, buffer updating and attribute
modification of fields previously written into the buffer are
not allowed. CICS includes the ERASE option with every
write to the terminal.

The NL character occupies a buffer position. A number
of buffer positions, equivalent to the value of the RDO
options PAGESIZE or ALTPAGE for that terminal, are
unavailable for data. This may cause data to wrap
around in the buffer; if this occurs, the PAGESIZE or
ALTPAGE value must be reduced.

OPCLASS(data-area)
specifies the data area that contains a list of operator
classes to which the data is to be routed. The classes
are supplied in a 3-byte field, each bit position
corresponding to one of the codes in the range 1
through 24 but in reverse order, that is, the first byte
corresponds to codes 24 through 17, the second byte to
codes 16 through 9, and the third byte to codes 8
through 1.

REQID(name)
specifies a prefix (2-character field) to be used as part
of a temporary storage identifier for CICS message
recovery. Only one prefix can be specified for each
logical message. The default prefix is "**".
BMS message recovery is provided for a logical
message only if the PAGING option is specified in the
BMS SEND commands, and if the syncpoint has been
reached.

SECONDS(data-value)
specifies a fullword binary value in the range 0–59, when
HOURS or MINUTES are also specified, or 0–359999
when SECONDS is the only option specified. This is a
suboption of the AFTER and AT options. For its use and
meaning, see the AFTER option.

TIME(hhmmss)
specifies the time of day at which data is to be
transmitted to the terminals specified in the ROUTE
command.
When using the C language, you are recommended to
use the AFTER/AT HOURS, MINUTES, and SECONDS
options as C does not provide a packed decimal data
type. You may use TIME, but if the value specified is
not an integer constant, the application is responsible for
ensuring that the value passed to CICS is in packed
decimal format.

TITLE(data-area)
specifies the data area that contains the title to be used
with a routing logical message. This title appears as part
of the response to a page query command. See the
CICS Application Programming Guide for the format of
the title option.
ROUTE

Conditions

IGREQID
occurs if the prefix specified in the REQID option is different from that established by a previous REQID option, or by default for this logical message—REQID (**).

INVERRTERM
occurs if the terminal identifier specified in the ERRTERM option is not valid or is assigned to a type of terminal not supported by BMS.
Default action: terminate the task abnormally.

INVLDC
occurs if the specified LDC mnemonic is not included in the LDC list for the logical unit.
Default action: terminate the task abnormally.

INVREQ
RESP2 values:

4 Hours out of range
5 Minutes out of range
6 Seconds out of range
200 BMS commands are not supported for distributed program link.

also occurs (RESP2 not set) in the following situations:

• Bytes 10 through 15 of a route list entry do not contain blanks.
Default action: terminate the task abnormally.

RTEFAIL
occurs in any of the following situations:

• A ROUTE command would result in the message being sent only to the terminal that initiated the transaction.
• A ROUTE command is issued against a remote shippable terminal that is not yet installed in the application-owning region.

Default action: return control to the application program at the point immediately following the ROUTE command.

RTESOME
occurs if any of the terminals specified by the ROUTE command options do not receive the message.
Default action: return control to the application program at the point immediately following the ROUTE command.
SEND (VTAM default)

Write data to a standard CICS supported terminal (BTAM or TCAM).

SEND (VTAM default)

SEND (APPC)

Send data on an APPC mapped conversation.

Description
SEND writes data to a terminal. This form of the send command can be used by all CICS-supported terminals for which the other SEND descriptions are not appropriate.

SEND (APPC)

Send data on an APPC mapped conversation.

Description
SEND sends data to a conversation partner on an APPC mapped conversation.
SEND (VTAM)

SEND (LUTYPE2/LUTYPE3)

Write data to a 3270-display logical unit (LUTYPE2) or a 3270-printer logical unit (LUTYPE3).

Description

SEND writes data to a terminal.

SEND (LUTYPE4)

Write data to a LUTYPE4 logical unit.

Description

SEND writes data to a terminal.
SEND (LUTYPE6.1)

Send data on an LUTYPE6.1 conversation.

```plaintext
>>> SEND SESSION(name) WAIT INVITE ATTACHID(name) FROM(data-area)

LENGTH(data-value) FLENGTH(data-value)

Conditions: CBIDERR, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR
```

Description

SEND sends data to a conversation partner on an LUTYPE6.1 conversation.

SEND (SCS)

Write data to a 3270 SCS printer logical unit.

```plaintext
>>> SEND FROM(data-area) LENGTH(data-value)

WAIT INVITE LAST CNOTCOMPL DEFRESP STRFIELD

FMH

Conditions: INVREQ, LENGERR, TERMERR
```

Description

SEND writes data to a logical unit. The SCS printer logical unit accepts a character string as defined by Systems Network Architecture (SNA).
SEND (VTAM)

SEND (3270 logical)

Write data to a 3270 logical unit.

SEND writes data to a terminal.

SEND (3600 pipeline)

Write data to a 3600 pipeline logical unit.

SEND writes data to a terminal.

Description
SEND (3600-3601)

Write data to a 3600 (3601) logical unit.

```
| SEND ──FROM(data-area) ──LENGTH(data-value) ──FLENGTH(data-value) ──LDC(name) ──WAIT ──INVITE ──CNOTCOMPL ──FMH ──LAST ──DEFRESP |
```

Conditions: INVREQ, LENGERR, SIGNAL, TERMERR

Description

SEND writes data to a terminal. This form of SEND also applies to the 3630 plant communication system.

A logical device code (LDC) is a code that can be included in an outbound FMH to specify the disposition of the data (for example, to which subsystem terminal it should be sent). Each code can be represented by a unique LDC mnemonic.

The installation can specify up to 256 2-character mnemonics for each TCTTE, and two or more TCTTEs can share a list of these mnemonics. Corresponding to each LDC mnemonic for each TCTTE is a numeric value (0 through 255).

A 3600 device and a logical page size are also associated with an LDC. “LDC” or “LDC value” is used in this book in reference to the code specified by the user. “LDC mnemonic” refers to the 2-character symbol that represents the LDC numeric value.

When the LDC option is specified, the numeric value associated with the mnemonic for the particular TCTTE, is inserted in the FMH. The numeric value associated with the LDC mnemonic is chosen by the installation, and is interpreted by the 3601 application program.

SEND (3600-3614)

Write data to a 3600 (3614) logical unit.

```
| SEND ──FROM(data-area) ──LENGTH(data-value) ──FLENGTH(data-value) ──INVITE ──CNOTCOMPL ──DEFRESP |
```

Conditions: INVREQ, LENGERR, TERMERR

Description

SEND writes data to a terminal. The data stream and communication format used between a CICS application program and a 3614 is determined by the 3614. The application program is therefore device dependent when handling 3614 communication.

For further information about designing 3614 application programs for CICS, refer to the IBM 4700/3600/3630 Guide.
SEND (VTAM)

SEND (3650 interpreter)

Write data to a 3650 interpreter logical unit.

SEND writes data to a terminal.

Description

SEND (3650-3270)

Write data to a 3650 logical unit.

SEND writes data to a terminal.

Description
SEND (3650-3653)

Send data to a 3650 (3653) logical unit.

Conditions: INVREQ, LENGERR, TERMERR

Description
SEND writes data to a terminal.

SEND (3650-3680)

Write data to a 3650 (3680) logical unit.

Conditions: INVREQ, LENGERR, TERMERR

Description
SEND writes data to a terminal.
SEND (VTAM)

SEND (3767)

Write data to a 3767 interactive logical unit.

SEND (3770)

Write data to a 3770 batch logical unit.

Description
SEND writes data to a terminal. This form of SEND also applies to the 3770 interactive logical unit.
SEND (3790 full-function or inquiry)

Write data to a 3790 full-function or inquiry logical unit.

```
SEND FROM(data-area) LENGTH(data-value) FLENGTH(data-value) WAIT INVITE CNOTCOMPL FMH
```

Conditions: INVREQ, LENGERR, SIGNAL, TERMERR

Description

SEND writes data to a terminal. This form of SEND also applies to the following devices:

- 3650/3680 full-function logical unit
- 3770 full-function logical unit

SEND (3790 SCS)

Write data to a 3790 SCS printer logical unit.

```
SEND FROM(data-area) LENGTH(data-value) FLENGTH(data-value) WAIT INVITE CNOTCOMPL DEFRESP
```

Conditions: INVREQ, LENGERR, TERMERR

Description

SEND writes data to a terminal.
SEND (VTAM)

SEND (3790 3270-display)

Write data to a 3790 (3270-display) logical unit.

```
SEND─FROM(data-area) ──LENGTH(data-value) ──FLENGTH(data-value) ──CTLCHAR(data-value) ──WAIT ─
ERASE ──DEFAULT ──INVITE ──DEFRESP ──ALTERNATE ─
```

Conditions: INVREQ, LENGERR, TERMERR

Description

SEND writes data to a terminal.

SEND (3790 3270-printer)

Write data to a 3790 (3270-printer) logical unit.

```
SEND─FROM(data-area) ──LENGTH(data-value) ──FLENGTH(data-value) ──CTLCHAR(data-value) ──WAIT ─
ERASE ──DEFAULT ──INVITE ──DEFRESP ──ALTERNATE ─
```

Conditions: INVREQ, LENGERR, TERMERR

Description

SEND writes data to a terminal.
Options

ALTERNATE
sets the terminal to use the ALTERNATE screen size.

ATTACHID(name)
specifies that an attach header (created by a BUILD ATTACH command) is to precede, and be concatenated with, the user data supplied in the FROM option. “name” (1–8 characters) identifies the attach header control block to be used in the local task.

CONFIRM
indicates that an application using a synchronization level 1 or 2 conversation requires a response from the remote application. A remote CICS application can respond positively by executing an ISSUE CONFIRMATION command, or negatively, by executing an ISSUE ERROR command, in which case the sending application has EIBERR and EIBERRCD set. CICS does not return control to the sending application until the response is received.

CONVID(name)
identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

For compatibility with earlier releases, SESSION is accepted as a synonym for CONVID. New programs should use CONVID.

If this option is omitted, the principal facility is assumed.

CTLCHAR(data-value)
specifies a 1-byte write control character (WCC†) that controls a SEND command for a 3270. A COBOL user must specify a data area containing this character. If the option is omitted, all modified data tags are reset to zero and the keyboard is restored.

DEFAULT
sets the terminal to use the DEFAULT screen size.

DEFRESP
indicates that a definite response is required when the output operation has been completed.

DEST(name)
specifies the 4-byte symbolic name of the TCAM destination to which the message is to be sent. This option is meaningful only for terminals defined using DFHTCT TYPE=SDSCI with DEVICE=TCAM.

If you use the DEST option, you must be aware of any restrictions placed on device-dependent data streams by the message control facility in use. See the programming information about the CICS-TCAM interface in the CICS Customization Guide.

ERASE
specifies that the screen printer buffer or partition is to be erased and the cursor returned to the upper left corner of the screen. (This option applies only to the 3270, or 8775, and to the 3604 Keyboard Display.)

The first output operation in any transaction, or in a series of pseudoconversational transactions, should always specify ERASE. For transactions attached to 3270 screens or printers, unless explicitly overridden by the DEFAULT or ALTERNATE option, this also ensures that the correct screen size is selected, as defined for the transaction by the SCRN SIZE option in the RDO PROFILE resource definition.

FLENGTH(data-value)
A fullword alternative to LENGTH.

FMH
specifies that a function management header has been included in the data to be written. If the ATTACHID option is specified as well, the concatenated FMH flag is set in the attach FMH.

FROM(data-area)
specifies the data to be written to the logical unit, or a partner transaction.

INVITE
For the SEND (APPC) command, INVITE allows an application program to add a change-direction indicator to data already sent to a process in a connected APPC system. Control data is not transmitted by CICS until the subsequent execution of a WAIT or a SYNCPOINT command, unless CONFIRM or WAIT is also coded on the GDS SEND INVITE command.

For the other SEND commands, INVITE specifies that the next terminal control command executed for this facility is a RECEIVE. This allows optimal flows to occur.

LAST
specifies that this is the last SEND command for a transaction.

LDC(name)
specifies the 2-character mnemonic used to determine the appropriate logical device code (LDC) numeric value. The mnemonic represents an LDC entry in the terminal control table TYPE=LDC.

† Documented in the IBM 3270 Data Stream Programmer’s Reference.
SEND (VTAM)

LENGTH(data-value)
specifies the length, as a halfword binary value, of the
data to be written. For a description of a safe upper limit,
see “LENGTH options” on page 5.

SESSION(name)
specifies the symbolic identifier (1–4 characters) of a
session TCTTE. This option specifies the alternate
facility to be used. If this option is omitted, the principal
facility for the task is used.

STATE(cvda)
gets the state of the current conversation. The cvda
values returned by CICS are:

ALLOCATED
CONFFREE
CONFRECEIVE
CONFSEND
FREE
PENDFREE
PENDRECEIVE
RECEIVE
ROLLBACK
SEND
SYNCFREE
SYNCRECEIVE
SYNCSEND

STRFIELD
specifies that the data area specified in the FROM
option contains structured fields. If this option is
specified, the contents of all structured fields must be
handled by the application program. The CONVERSE
command, rather than a SEND command, must be used
if the data area contains a read partition structured field.
(Structured fields are described in the CICS 3270 Data
Stream Device Guide.)

CTLCHAR and ERASE are mutually exclusive with
STRFIELD, and their use with STRFIELD generates an
error message.

WAIT
specifies that processing of the command must be
completed before any subsequent processing is
attempted.

If the WAIT option is not specified, control is returned to
the application program when processing of the
command has started. A subsequent input or output
request (terminal control, BMS, or batch data
interchange) to the terminal associated with the task
causes the application program to wait until the previous
request has been completed.

Conditions
Some of the following conditions may occur in combination. If
more than one occurs, only the first is passed to the
application program.

EIBRCODE, however, is set to indicate all the conditions that
occurred.

CBIDERR
occurs if the requested attach header control block
named in ATTACHID cannot be found.

Default action: terminate the task abnormally.

IGREQCD
occurs when an attempt is made to execute a SEND
command after a SIGNAL data-flow control command
with a request change direction (RCD) code has been
received from the logical unit.

Default action: terminate the task abnormally.

INVREQ
RESP2 values:
200 A distributed program link server application
attempted to send on its function-shipping session
(its principal facility).

For SEND (APPC), a distributed program link
server application specified the function-shipping
session (its principal facility) on the CONVID
option.

also occurs (RESP2 not set) in any of the following
situations:
• The CONFIRM option has been specified, but the
APPC conversation is not sync level 1 or 2.
• The SEND command has been used on an APPC
conversation that is not a mapped conversation or
that is not using the EXEC CICS interface.

Default action: terminate the task abnormally.

LENGERR
occurs if an out-of-range value is supplied in the
LENGTH or FLENGTH option.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the CONVID value in the command does not
relate to a conversation that is owned by the application,
or if the facility specified in the command is not owned
by the application.

Default action: terminate the task abnormally.

SIGNAL
occurs when an inbound SIGNAL data-flow control
command has been received from a logical unit or
session. EIBSIG is always set when an inbound signal is
received.

Default action: ignore the condition.
TERMERR

occurs for a session-related error. Any action on that conversation other than a FREE causes an ATCV abend.

A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program handles the session error.

Default action: terminate the task abnormally with abend code ATNI.
SEND (non-VTAM)

SEND (non-VTAM default)

Write data to a standard CICS terminal support (BTAM or TCAM).

```
SEND(FROM(data-area) ──LENGTH(data-value) ──DEST(name) ──WAIT ─
```

Conditions: INVREQ, LENGERR, NOTALLOC

Description

SEND writes data to a terminal. This form of the send command can be used by all CICS-supported terminals for which the other SEND descriptions are not appropriate.

SEND (MRO)

Send data on an MRO conversation.

```
SEND(SESSION(name) ──WAIT ──INVITE ──ATTACHID(name) ──FROM(data-area)
       ──LENGTH(data-value) ──FMH ──DEFRESP ──STATE(cvda)
```

Conditions: CBIDERR, INVREQ, LENGERR, NOTALLOC, TERMERR

Description

SEND sends data to a conversation partner on an MRO conversation.
SEND (System/3)

Write data to a System/3.

```
SEND--FROM(data-area)--LENGTH(data-value)--FLENGTH(data-value)--DEST(name)--WAIT--ASIS--CNOTCOMPL
```

Conditions: INVREQ, LENGERR

Description

SEND writes data to a terminal. This form of the SEND command also applies to the following devices:

- 2770 data communication system
- 2780 data transmission terminal
- 3660 supermarket scanning system
- 3780 communication terminal.

SEND (System/7)

Write data to a System/7.

```
SEND--FROM(data-area)--LENGTH(data-value)--FLENGTH(data-value)--DEST(name)--WAIT--PSEUDOBIN--ASIS
```

Conditions: INVREQ, LENGERR

Description

SEND writes data to a terminal. For a description of running with a System/7, see “CONVERSE (System/7)” on page 55.
SEND (non-VTAM)

SEND (2260)

Write data to a 2260 or 2265 display station.

SEND—FROM(data-area) LENGTH(data-value) FLENGTH(data-value) CTLCHAR(data-value) DEST(name) LINEADDR(data-value) WAIT LEAVEKB

Conditions: INVREQ, LENGERR

Description
SEND writes data to a terminal.

SEND (2741)

Write data to a 2741 communication terminal.

SEND—FROM(data-area) LENGTH(data-value) FLENGTH(data-value) DEST(name) WAIT

Conditions: INVREQ, LENGERR, WRBRK

Description
SEND writes data to a terminal. For more information about using a 2741 communication terminal, see “CONVERSE (2741)” on page 57.
SEND (2980)

Write data to a 2980 general banking terminal system.

Description
SEND writes data to a terminal. For more information about the 2980 general banking system, see “RECEIVE (2980)” on page 241.

SEND (3270 display)

Write data to a 3270 information display system (BTAM or TCAM).

Description
SEND writes data to a terminal.
SEND (non-VTAM)

SEND (3600 BTAM)

Write data to a 3600 or 4700 finance communication system (BTAM) - only valid for remote terminals. See “BTAM programmable terminals” on page 404.

```
SEND─FROM(data-area)─LENGTH(data-value)─WAIT─ASIS
```

Conditions: INVREQ, LENGERR

Description

SEND writes data to a terminal. This form of the SEND command also applies to the 4700 finance communication system. For more information about using the 3600 or 4700 finance communication system, see “CONVERSE (3600 BTAM)” on page 59.

SEND (3735)

Write data to a 3735 Programmable Buffered Terminal.

```
SEND─FROM(data-area)─LENGTH(data-value)─WAIT─ASIS
```

Conditions: INVREQ, LENGERR

Description

SEND writes data to a terminal. The 3735 Programmable Buffered Terminal may be serviced by CICS in response to terminal-initiated input (automatic answering), or as a result of an automatic (automatic calling) or time-initiated transaction.

For more information about the 3735, see “CONVERSE (3735)” on page 61.
SEND (3740)

Write data to a 3740 data entry system.

Conditions: INVREQ, LENGERR

Description

SEND writes data to a terminal. In batch mode, many files are exchanged between the 3740 and CICS in a single transmission. The transmission of an input batch must be complete before an output transmission can be started.

Options

ALTERNATE
sets the terminal to use the ALTERNATE screen size.

ASIS
indicates that output is to be sent in transparent mode (with no recognition of control characters and accepting any of the 256 possible combinations of eight bits as valid transmittable data).

Note: If you are using a katakana terminal, you might see some messages containing mixed English and katakana characters. That is because katakana terminals cannot display mixed-case output. Uppercase characters in the data stream appear as uppercase English characters, but lowercase characters appear as katakana characters. If this happens, ask your system programmer to specify MSGCASE=UPPER in the system initialization parameters so that messages contain uppercase characters only.

ATTACHID(name)
specifies that an attach header (created by a BUILD ATTACH command) is to precede, and be concatenated with, the user data supplied in the FROM option. “name” (1–8 characters) identifies the attach header control block to be used in the local task.

CBUFF
specifies that data is to be written to a common buffer in a 2972 control unit. The WAIT option is implied.

CNOTCOMPL
indicates that the request/response unit (RU) sent as a result of this SEND command does not complete the chain. If this option is omitted and chain assembly has been specified, the RU terminates the chain.

DEFRESP
indicates that a definite response is required when the output operation has been completed.

DEST(name)
specifies the 4-byte symbolic name of the TCAM destination to which the message is to be sent. This option is meaningful only for terminals defined using DFHTCT TYPE=SDSCI with DEVICE=TCAM.

If you use the DEST option, you must be aware of any restrictions placed on device-dependent data streams by the message control facility in use. See the programming information about the CICS-TCAM interface in the CICS Customization Guide.

ERASE
specifies that the screen printer buffer or partition is to be erased and the cursor returned to the upper left corner of the screen. (This option applies only to the 3270, or 8775, and to the 3604 Keyboard Display.)

The first output operation in any transaction, or in a series of pseudoconversational transactions, should always specify ERASE. For transactions attached to 3270 screens or printers, unless explicitly overridden by the DEFAULT or ALTERNATE option, this also ensures that the correct screen size is selected, as defined for the transaction by the SCRNSIZE option in the RDO PROFILE resource definition.

† Documented in the IBM 3270 Data Stream Programmer’s Reference.
SEND (non-VTAM)

FLENGTH(data-value)
A fullword alternative to LENGTH.

FMH
specifies that a function management header has been included in the data to be written. If the ATTACHID option is specified as well, the concatenated FMH flag is set in the attach FMH.

FROM(data-area)
specifies the data to be written to the logical unit or terminal.

INVITE
specifies that the next terminal control command to be executed for this facility is a RECEIVE. This allows optimal flows to occur.

LAST
specifies that this is the last output operation for a transaction and therefore the end of a bracket.

LEAVEKB
specifies that the keyboard is to remain locked at the completion of the data transfer.

LENGTH(data-value)
specifies the length, as a halfword binary value, of the data to be written. For a description of a safe upper limit, see “LENGTH options” on page 5.

LINEADDR(data-value)
specifies that the writing is to begin on a specific line of a 2260/2265 screen. The data value is a halfword binary value in the range 1 through 12 for a 2260, or 1 through 15 for a 2265.

PASSBK
specifies that communication is with a passbook. The WAIT option is implied.

PSEUDOBIN *(start-stop only)*
specifies that the data being written is to be translated from System/7 hexadecimal to pseudobinary.

SESSION(name)
specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used. If this option is omitted, the principal facility for the task is used.

STATE(cvda)
gets the state of the transaction program. The cvda values returned by CICS are:

- ALLOCATED
- FREE
- PENDFREE
- RECEIVE
- ROLLSBACK
- SEND
- SYNFREE
- SYNFRECEIVE
- SYNCSEND

STRFIELD
specifies that the data area specified in the FROM option contains structured fields. If this option is specified, the contents of all structured fields must be handled by the application program. The CONVERSE command, rather than a SEND command, must be used if the data area contains a read partition structured field. (Structured fields are described in the *CICS 3270 Data Stream Device Guide*.)

WAIT
specifies that processing of the command must be completed before any subsequent processing is attempted.

If the WAIT option is not specified, control is returned to the application program when processing of the command has started. A subsequent input or output request (terminal control, BMS, or batch data interchange) to the terminal associated with the task causes the application program to wait until the previous request has been completed.

Conditions

CBIDERR
occurs if the requested attach header control block named in ATTACHID cannot be found.

Default action: terminate the task abnormally.

INVREQ
RES2 values:

- **200** occurs if a distributed program link server application attempted to send on its function-shipping session (its principal facility)

Default action: terminate the task abnormally.

LENGERR
occurs if an out-of-range value is supplied in the LENGTH or FLENGTH option.

Default action: terminate the task abnormally.

NOPASSBKWR
occurs if no passbook is present.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.

TERMERR
occurs for a terminal-related error, such as a session failure. This condition applies to VTAM-connected terminals only.
A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program (DFHZNAC) handles the session error.

Default action: terminate the task abnormally with abend code ATNI.

WRBRK occurs if the command is terminated by the attention key.

Default action: ignore the condition.
SEND CONTROL

SEND CONTROL

Send device controls to a terminal without map or text data. The keywords are separated into those supported by minimum, standard, and full BMS. For further information about BMS, see the CICS Application Programming Guide.

Minimum BMS:

Standard BMS:

Full BMS:

Conditions: IGREQCD, IGREQID, INVLDC, INVPARTN, INVREQ, RETPAGE, TSIOERR, WRBRK

Description

SEND CONTROL sends device controls to a terminal.

When using the SEND CONTROL command with any of the ALARM, FREEKB, FRSET, HONEOM, L40, L64, L80, or PRINT options, see CTRL on page 438 for a description of the option priority.

ACCUM

specifies that this command is one of a number of commands that are used to build a logical message. The logical message is completed by a SEND PAGE command, or deleted by a PURGE MESSAGE command.

ACTPARTN(name)

specifies the name (1–2 characters) of the partition to be activated. Activating a partition moves the cursor into the specified partition, and unlocks the keyboard for the specified partition.

This option is ignored if the target terminal does not support partitions, or if there is no application partition set.

ALARM

specifies that the 3270 audible alarm feature is to be activated. For logical units supporting FMHs (except interactive and batch logical units), ALARM instructs BMS to set the alarm flag in the FMH.
ALTERNATE

sets the terminal to use the ALTERNATE screen size.

CURSOR(data-value)

specifies the location the 3270 or 3604 cursor is returned to on completion of a SEND CONTROL command.

The data value must be a halfword binary value that specifies the cursor position relative to zero; the range of values that can be specified depends on the size of the screen being used.

If ACCUM is being used, the most recent value of CURSOR specified is used to position the cursor.

The value specified in the CURSOR option must be positive. A negative value leads to unpredictable results.

If this option is omitted, the cursor is positioned at position zero of the screen.

DEFAULT

sets the terminal to use the DEFAULT screen size.

ERASE

specifies that the screen printer buffer or partition is to be erased and the cursor returned to the upper left corner of the screen. (This option applies only to the 3270, or 8775, and to the 3604 Keyboard Display.)

The first output operation in any transaction, or in a series of pseudoconversational transactions, should always specify ERASE. For transactions attached to 3270 screens or printers, unless explicitly overridden by the DEFAULT or ALTERNATE option, this also ensures that the correct screen size is selected, as defined for the transaction by the SCRNSIZE option in the RDO PROFILE definition.

ERASEAUP

specifies that all unprotected character locations in the partition or the entire screen are to be erased. (This option applies only to the 3270 and 8775.)

FORMFEED

specifies that a new page is required. For 3270 printers and displays, the FORMFEED character is positioned at the start of the buffer. The application program must thus ensure that this buffer position is not overwritten by map or text data. It is ignored if the target terminal does not support FORMFEED (that is, the RDO TYPETERM option FORMFEED was not used).

FREEKB

specifies that the 3270 keyboard is to be unlocked. If FREEKB is omitted, the keyboard remains locked.

Note that the keyboard lock status is maintained separately for each partition on a terminal that supports partitions.

FRSET

specifies that the modified data tags (MDTs) of all fields currently in the 3270 (or partition) buffer are to be reset to the unmodified condition (that is, field reset).

This allows the ATTRB operand of DFHMDF for the next requested map to control the final status of fields written or rewritten in response to a BMS command, if no other attribute information has been written in the symbolic map.

HONEOM

specifies that the default printer line length is to be used. This length should be the same as that specified using the RDO TYPETERM options PAGESIZE or ALTPAGE.

LAST

specifies that this is the last output operation for a transaction and, therefore, the end of a bracket. This option applies to logical units only.

LDC(name)

specifies a 2-character mnemonic to be used to determine the logical device code (LDC) to be transmitted in the FMH to the logical unit. The mnemonic identifies an LDC entry defined by a DFHTCT TYPE=LDC macro. When an LDC is specified, BMS uses the device type, the page size, and the page status associated with the LDC mnemonic to format the message. These values are taken from the extended local LDC table for the LU, if it has one. If the LU has only a local (unextended) LDC table, the values are taken from the system LDC table. The numeric value of the LDC is obtained from the local LDC table, unless this is an unextended table and the value is not specified, in which case it is taken from the system table.

L40, L64, or L80

specifies the line length for a 3270 printer; a carrier return and line feed are forced after 40, 64, or 80 characters have been printed on a line. Unacceptable results are likely if this differs from the page width specified by the RDO TYPETERM options PAGESIZE or ALTPAGE.

When using the options, refer to CTRL on page 438 for a description of the option priority.

MSR(data-value)

specifies the 4-byte data value that controls the 10/63 magnetic stripe reader attached to an 8775 or 3643 terminal. A set of constants is provided in DFHMSRCA to assist in setting this 4-byte area. See “Magnetic slot reader (MSR) control value constants, DFHMSRCA” on page 423 for a complete list. This option is ignored if the RDO TYPETERM option MSRCONTROL was not used.

OUTPARTN(name)

specifies the name (1–2 characters) of the partition to which data is to be sent. This option is ignored if the terminal does not support partitions, or if there is no application partition set associated with the terminal. If there is an application partition set, and the OUTPARTN option is omitted, data is sent to the partition named by the PARTN operand of the DFHMSD (see “DFHMSD” on page 443) or the DFHMDI (see “DFHMDI” on page 437) map definition macros. If maps are not used, or if there...
is no PARTN operand, the output is sent to the first partition in the partition set.

PAGING
specifies that the output data is not to be sent immediately to the terminal, but is to be placed in temporary storage and displayed in response to paging commands entered by the terminal operator.

If PAGING is specified with a REQID that is defined as recoverable in the temporary storage table (TST), CICS provides message recovery for logical messages if the task has reached a syncpoint.

PRINT
specifies that a print operation is to be started at a 3270 printer or at a 3275 with the printer adapter feature, or that data on an LUTYPE2 (3274/76 or 3790) is to be printed on a printer allocated by the controller. If this option is omitted, the data is sent to the printer buffer but is not printed.

REQID(name)
specifies a 2-character prefix to be used as part of a temporary storage identifier for CICS message recovery. Only one prefix can be specified for each logical message. The default prefix is **.

BMS message recovery is provided for a logical message only if the PAGING option is specified in the BMS SEND commands, and if the syncpoint has been reached.

SET(ptr-ref)
specifies the pointer to be set to the address of the output data.

The SET option specifies that completed pages are to be returned to the application program. The pointer is set to the address of a list of completed pages. See the description of the SET option in the section about full-function BMS in the **CICS Application Programming Guide** for more guidance on using the SET option.

If TIOAPFX=YES is specified in the map definition, the pointer returned contains the address of the TIOA prefix. The user data starts at offset X'0C' from the start of the TIOA prefix.

TERMINAL
specifies that the output data is to be sent to the terminal that originated the transaction.

WAIT
specifies that control should not be returned to the application program until the output operation has been completed.

If WAIT is not specified, control returns to the application program when the output operation has started. A subsequent input or output command (terminal control, BMS, or batch data interchange) causes the application program to wait until the previous command has been completed.

Conditions

IGREQCD
occurs when an attempt is made to execute a SEND CONTROL command after a SIGNAL data-flow control command with a request change direction (RCD) code has been received from an LUTYPE4 logical unit.

Default action: terminate the task abnormally.

IGREQID
occurs if the prefix specified in the REQID option is different from that established by a previous REQID option, or by default for this logical message—REQID (**).

Default action: terminate the task abnormally.

INVLDC
occurs if the specified LDC mnemonic is not included in the LDC list for the logical unit.

Default action: terminate the task abnormally.

INVPARTN
occurs if the specified partition is not defined in the partition set associated with the application program.

Default action: terminate the task abnormally.

INVREQ
RESP2 values:

- **200** A distributed program link server application attempted to send on its function-shipping session (its principal facility).

also occurs (RESP2 not set) in the following situation:

- Control information is output to the same partition or LDC as mapped data while a BMS logical message is active. If neither partitions nor LDCs are in use, control information is output to the same device as mapped data.

Default action: terminate the task abnormally.

RETPAGE
occurs if the SET option is specified and a completed page is ready for return to the application program.

Default action: return control to the application program at the point immediately following the BMS SEND command.

TSIOERR
occurs if there is an irrecoverable temporary storage input/output error.

Default action: terminate the task abnormally.

WRBRK
occurs if the command is interrupted by the terminal operator pressing the ATTN key. It applies only to the 2741 Communication Terminal, and only if write break is supported for CICS.

Default action: ignore the condition.
SEND MAP

Send mapped output data to a terminal. The keywords are separated into those supported by minimum, standard, and full BMS. For further information about BMS, see the CICS Application Programming Guide.

Minimum BMS:

Minimum BMS:

Standard BMS:

Full BMS:

Conditions: IGREQCD, IGREQID, INVLDC, INVMPSZ, INVPARTN, INVREQ, OVERFLOW, RETPAGE, TSIOERR, WRBRK

Description

SEND MAP sends output data to a terminal.

When using the SEND MAP command with any of the ALARM, FREEKB, FRSET, HONEOM, L40, L64, L80, or PRINT options, see CTRL on page 438 for a description of the option priority.

See Appendix K, “BMS macro summary” on page 427 for map definition.
Options

ACCUM
specifies that this command is one of a number of commands that are used to build a logical message. The logical message is completed by a SEND PAGE command, or deleted by a PURGE MESSAGE command.

ACTPARTN(name)
specifies the name (1–2 characters) of the partition to be activated. Activating a partition moves the cursor into the specified partition, and unlocks the keyboard for the specified partition.

This option is ignored if the target terminal does not support partitions, or if there is no application partition set.

ALARM
specifies that the 3270 audible alarm feature is to be activated. For logical units supporting FMHs (except interactive and batch logical units), ALARM instructs BMS to set the alarm flag in the FMH.

When using the ALARM option, refer to CTRL on page 438 for a description of the option priority.

ALTERNATE
sets the terminal to use the ALTERNATE screen size.

CURSOR(data-value)
specifies the location to which the 3270 or 3604 cursor is to be returned upon completion of a SEND MAP command.

The data value must be a halfword binary value that specifies the cursor position relative to zero; the range of values that can be specified depends on the size of the screen being used. If no data value is specified, symbolic cursor positioning is assumed. See the section about minimum BMS in the CICS Application Programming Guide for more information about symbolic cursor positioning.

This option overrides any IC option of the ATTRB operand of DFHMDF. If ACCUM is being used, the most recent value of CURSOR specified is used to position the cursor.

The value specified in the CURSOR option must be positive. A negative value leads to unpredictable results.

DATAONLY
specifies that only application program data is to be written. The attribute characters (3270 only) must be specified for each field in the supplied data. If the attribute byte in the user-supplied data is set to X'00', the attribute byte on the screen is unchanged. Any default data or attributes from the map are ignored.

DEFAULT
sets the terminal to use the DEFAULT screen size.

ERASE
specifies that the screen printer buffer or partition is to be erased and the cursor returned to the upper left corner of the screen. (This option applies only to the 3270, or 8775, and to the 3604 Keyboard Display.)

The first output operation in any transaction, or in a series of pseudoconversational transactions, should always specify ERASE. For transactions attached to 3270 screens or printers, unless explicitly overridden by the DEFAULT or ALTERNATE option, this also ensures that the correct screen size is selected, as defined for the transaction by the SCRNSIZE option in the RDO PROFILE definition.

ERASEAUP
specifies that before this page of output is displayed, all unprotected character locations in the partition or the entire screen are to be erased. (This option applies only to the 3270 and 8775.)

FMHPARM(name)
specifies the name (1–8 characters) of the outboard map to be used. (This option applies only to 3650 logical units with outboard formatting.)

FORMFEED
specifies that a new page is required. For 3270 printers and displays, the FORMFEED character is positioned at the start of the buffer. The application program must thus ensure that this buffer position is not overwritten by map or text data. It is ignored if the target terminal does not support FORMFEED (that is, the RDO TYPETERM option FORMFEED was not used).

FREEKB
specifies that the 3270 keyboard should be unlocked after the data is written. If FREEKB is omitted, the keyboard remains locked.

Note that the keyboard lock status is maintained separately for each partition on a terminal that supports partitions.

When using the FREEKB option, refer to CTRL on page 438 for a description of the option priority.

FROM(data-area)
specifies the data area containing the data to be processed. If this field is not specified, the name defaults to the name of the map suffixed with an O. This includes the 12-byte prefix generated by the TIOAPFX=YES option on the DFHMDI and DFHMSD BMS map definitions (see pages 441 and 448).

FRSET
specifies that the modified data tags (MDTs) of all fields currently in the 3270 (or partition) buffer are to be reset to the unmodified condition (that is, field reset) before any map data is written to the buffer.

This allows the ATTRB operand of DFHMDF for the requested map to control the final status of fields written or rewritten in response to a BMS command, if no other
attribute information has been written in the symbolic map.

When using the FRSET option refer to CTRL on page 438 for a description of the option priority.

HONEOM
specifies that the default printer line length is to be used. This length should be the same as that specified using the RDO TYPETERM options PAGESIZE or ALTPAGE, and the same as the printer platen width; otherwise the data may not format correctly.

When using the HONEOM option, refer to CTRL on page 438 for a description of the option priority.

LAST
specifies that this is the last output operation for a transaction and, therefore, the end of a bracket. This option applies to logical units only.

LDC(name)
specifies a 2-character mnemonic to be used to determine the logical device code (LDC) to be transmitted in the FMH to the logical unit. The mnemonic identifies an LDC entry defined by a DFHTCT TYPE=LDC macro.

When an LDC is specified, BMS uses the device type, the page size, and the page status associated with the LDC mnemonic to format the message. These values are taken from the extended local LDC table for the logical unit, if it has one. If the logical unit has only a local (unextended) LDC table, the values are taken from the system LDC table. The numeric value of the LDC is obtained from the local LDC table, unless this is an unextended table and the value is not specified, in which case it is taken from the system table.

If the LDC option is omitted, the LDC mnemonic specified in the DFHMSD macro is used; see “DFHMSD” on page 443. If the LDC option has also been omitted from the DFHMSD macro, the action depends on the type of logical unit, as follows:

3601 logical unit
The first entry in the local or extended local LDC table is used, if there is one. If a default cannot be obtained in this way, a null LDC numeric value (X’00’) is used. The page size used is the value that is specified in the RDO TYPETERM options PAGESIZE or ALTPAGE, or (1,40) if such a value is not specified.

LUTYPE4 logical unit, batch logical unit, or batch data interchange logical unit
The local LDC table is not used to supply a default LDC; instead, the message is directed to the logical unit console (that is, to any medium that the logical unit elects to receive such messages). For a batch data interchange logical unit, this does not imply sending an LDC in an FMH. The page size is obtained in the manner described for the 3601 logical unit.

LENGTH(data-value)
specifies the length of the data to be formatted as a halfword binary value.

If the data area sending the map is longer than the data to be mapped, LENGTH should be specified. This should include the length of the 12-byte prefix generated by the TIOAPFX=YES option on the DFHMDI and DFHMSD BMS map definitions (see pages 441 and 448). For a description of a safe upper limit, see “LENGTH options” on page 5.

L40, L64, or L80
specifies the line length for a 3270 printer; a carrier return and line feed are forced after 40, 64, or 80 characters have been printed on a line. Unacceptable results are likely if this differs from the page width specified by the RDO TYPETERM options PAGESIZE or ALTPAGE.

When using the options, refer to CTRL on page 438 for a description of the option priority.

MAP(name)
specifies the name (1–7 characters) of the map to be used.

MAPONLY
specifies that only default data from the map is to be written.

MAPSET(name)
specifies the unsuffixed name (1–7 characters) of the mapset to be used. The mapset must reside in the CICS program library. The mapset can be defined either by using RDO or by program autoinstall when the mapset is first used. If this option is not specified, the name given in the MAP option is assumed to be that of the mapset.

The number of maps per mapset is limited to a maximum of 9998.

MSR(data-value)
specifies the 4-byte data value that controls the 10/63 magnetic stripe reader attached to an 8775 or 3643 terminal. A set of constants is provided in DFHMSRCA to assist in setting this 4-byte area. See “Magnetic slot reader (MSR) control value constants, DFHMSRCA” on page 423 for a complete list. This option is ignored if the RDO TYPETERM option MSRCOVERLAP was not used.

NLEOM
specifies that data for a 3270 printer or a 3275 display printer should be built with blanks and new-line (NL) characters, and that an end-of-message (EM) character should be placed at the end of the data. As the data is printed, each NL character causes printing to continue on the next line, and the EM character terminates printing.

This option must be specified in the first SEND MAP command used to build a logical message. The option is
SEND MAP

ignored if the device receiving the message (direct or routed) is not one of those mentioned above.

If this option is used, buffer updating and attribute modification of fields previously written into the buffer are not allowed. CICS includes the ERASE option with every write to the terminal.

The NL character occupies a buffer position. A number of buffer positions, equivalent to the value of the RDO TYPETERM options PAGESIZE or ALTPAGE, for that terminal, is unavailable for data. This may cause data to wrap around in the buffer; if this occurs, the PAGESIZE or ALTPAGE value must be reduced.

The NLEOM option overrides the ALARM option if the latter is present.

NOFLUSH
specifies that CICS does not clear pages on completion but returns control to the program (having set the OVERFLOW condition in EIBRESP).

OUTPARTN(name)
specifies the name (1–2 characters) of the partition to which data is to be sent. This option is ignored if the terminal does not support partitions, or if there is no application partition set associated with the terminal. If there is an application partition set, and the OUTPARTN option is omitted, data is sent to the partition named by the PARTN operand of the DFHMSD or DFHMDI map definitions. If maps are not used, or if there is no PARTN operand, the output is sent to the first partition in the partition set.

PAGING
specifies that the output data is not to be sent immediately to the terminal, but is to be placed in temporary storage and displayed in response to paging commands entered by the terminal operator.

If PAGING is specified with a REQID that is defined as recoverable in the temporary storage table (TST), CICS provides message recovery for logical messages if the task has reached a syncpoint.

PRINT
specifies that a print operation is to be started at a 3270 printer or at a 3275 with the printer adapter feature, or that data on an LUTYPE2 (3274/76 or 3790) is to be printed on a printer allocated by the controller. If this option is omitted, the data is sent to the printer buffer but is not printed.

When using the PRINT option, refer to CTRL on page 438 for a description of the option priority.

REQID(name)
specifies a 2-character prefix to be used as part of a temporary storage identifier for CICS message recovery. Only one prefix can be specified for each logical message. The default prefix is **.

BMS message recovery is provided for a logical message only if the PAGING option is specified in the BMS SEND commands and if the syncpoint has been reached.

SET(ptr-ref)
specifies the pointer to be set to the address of the input or output data.

The SET option specifies that completed pages are to be returned to the application program. The pointer is set to the address of a list of completed pages. See the description of the SET option in the section on full BMS in the CICS Application Programming Guide for more guidance about using the SET option.

The application program regains control either immediately following the SEND MAP command (if the current page is not yet completed), or at the label specified in a HANDLE CONDITION RETPAGE command, if the page has been completed.

If TIOAPFX=YES is specified in the map definition, the pointer returned contains the address of the TIOA prefix. The user data starts at offset X’0C’ from the start of the TIOA prefix.

TERMINAL
specifies that the output data is to be sent to the terminal that originated the transaction.

WAIT
specifies that control should not be returned to the application program until the output operation has been completed.

If WAIT is not specified, control returns to the application program when the output operation has started. A subsequent input or output command (terminal control, BMS, or batch data interchange) causes the application program to wait until the previous command has been completed.

Conditions

Some of the following conditions may occur in combination. If more than one occurs, only the first is passed to the application program.

IGREQCD
occurs when an attempt is made to execute a SEND MAP command after a SIGNAL data-flow control command with a request change direction (RCD) code has been received from an LUTYPE4 logical unit.

Default action: terminate the task abnormally.

IGREQID
occurs if the prefix specified in the REQID option is different from that established by a previous REQID option, or by default for this logical message—REQID (**).

Default action: terminate the task abnormally.
INVLDC
occurs if the specified LDC mnemonic is not included in
the LDC list for the logical unit.
Default action: terminate the task abnormally.

INVMPSZ
occurs if the specified map is too wide for the terminal,
or if a HANDLE CONDITION OVERFLOW command is
active and the specified map is too long for the terminal.
Default action: terminate the task abnormally.

INVPARTN
occurs if the specified partition is not defined in the
partition set associated with the application program.
Default action: terminate the task abnormally.

INVREQ
RESP2 values:
 200 Command not allowed for a distributed program
 link server program.

also occurs (RESP2 not set) in any of the following situations:

- Text data is output to the same partition or LDC as
 mapped data while a BMS logical message is
 active. If neither partitions nor LDCs are in use, text
 data is output to the same logical message as
 mapped data.
- A separate SEND MAP command with the ACCUM
 option is issued to the terminal that originated the
 transaction while a routed logical message is being
 built.
- A SEND MAP command is issued for a map without
 field specifications by specifying the FROM option
 without the DATAONLY option.
- During overflow processing, data is sent to a
different LDC from the LDC that caused page
overflow.
- Partitions are in use, the OUTPARTN option has not
 been coded on the SEND MAP command, but the
 PARTN operand has been coded in the mapset
 definition. If the condition arises, it suggests that
different versions of the mapset have different
PARTN values, and that the suffix deduced for the
partition is not the same as the suffix of the loaded
mapset.
- A SEND MAP command with the DATAONLY option
 is issued with a data area, supplied by the user, that
 resides above the 16MB line. But the length of this
 data area is not longer than the TIOA prefix.

Default action: terminate the task abnormally.

OVERFLOW
occurs if the mapped data does not fit on the current
page. This condition is only raised if a HANDLE
CONDITION OVERFLOW command is active.

Default action: ignore the condition.

RETPAGE
occurs if the SET option is specified and a completed
page is ready for return to the application program.
Default action: return control to the application program
at the point immediately following the BMS SEND MAP
command.

TSIOERR
occurs if there is an irrecoverable temporary storage
input/output error.
Default action: terminate the task abnormally.

WRBRK
occurs if a SEND MAP command is interrupted by the
terminal operator pressing the ATTN key. It applies only
to the 2741 Communication Terminal, and only if write
break is supported for CICS.
Default action: ignore the condition.
SEND MAP MAPPINGDEV

SEND MAP MAPPINGDEV

Create mapped output data to be sent to a terminal described by MAPPINGDEV at some later time. For further information about BMS, see the CICS Application Programming Guide.

Minimum BMS:

```
SEND MAP(name)─ MAPPINGDEV(data-value) ─ SET(ptr-ref)
                                    ─ MAPSET(name) ─
                                      ─ FROM(data-area) ─ DATAONLY ─ LENGTH(data-value) ─ CURSOR((data-value)) ─
                                      ─ MAPONLY ─ ERASE ─ ERASEAUP ─ PRINT ─ FREEKB ─ ALARM ─ FRSET ─ FORMFEED
```

Conditions: INVMPSZ, INVREQ

Description

SEND MAP MAPPINGDEV creates mapped output data to be sent to a terminal that is not the principal facility of the transaction. The terminal characteristics to be used are defined by MAPPINGDEV.

The mapped data is not transmitted but is returned to the application in a buffer defined by the SET option.

Options

ALARM

specifies that the 3270 audible alarm feature is to be activated. For logical units supporting FMHs (except interactive and batch logical units), ALARM instructs BMS to set the alarm flag in the FMH.

When using the ALARM option, refer to CTRL on page 438 for a description of the option priority.

CURSOR(data-value)

specifies the location to which the 3270 cursor is to be returned upon completion of a SEND MAP MAPPINGDEV command.

The data value must be a halfword binary value that specifies the cursor position relative to zero; the range of values that can be specified depends on the size of the screen being used. If no data value is specified, symbolic cursor positioning is assumed. See the section about minimum BMS in the CICS Application Programming Guide for more information about symbolic cursor positioning.

This option overrides any IC option of the ATTRB operand of DFHMDF.

The value specified in the CURSOR option must be positive. A negative value leads to unpredictable results.

DATAONLY

specifies that only application program data is to be written. The attribute characters (3270 only) must be specified for each field in the supplied data. If the attribute byte in the user-supplied data is set to X'00', the attribute byte on the screen is unchanged. Any default data or attributes from the map are ignored.

ERASE

specifies that the screen printer buffer is to be erased and the cursor returned to the upper left corner of the screen. (This option applies only to the 3270, or 8775)

The first output operation in any transaction, or in a series of pseudoconversational transactions, should always specify ERASE. For transactions attached to 3270 screens or printers, this also ensures that the correct screen size is selected, as defined for the transaction by the SCRNSIZE option in the RDO PROFILE definition.

ERASEAUP

specifies that before this page of output is displayed, all unprotected character locations in the entire screen are to be erased. (This option applies only to the 3270 and 8775.)

FORMFEED

specifies that a new page is required. For 3270 printers and displays, the FORMFEED character is positioned at the start of the buffer. The application program must thus ensure that this buffer position is not overwritten by map or text data. It is ignored if the target terminal does not support FORMFEED (that is, the RDO TYPETERM option FORMFEED was not used, or the terminal control table TYPE=TERMINAL does not specify FF=YES).
FREEKB specifies that the 3270 keyboard should be unlocked after the data is written. If FREEKB is omitted, the keyboard remains locked.

When using the FREEKB option, refer to CTRL on page 438 for a description of the option priority.

FROM(data-area) specifies the data area containing the data to be processed. If this field is not specified, the name defaults to the name of the map suffixed with an O. This includes the 12-byte prefix generated by the TIOAPFX=YES option on the DFHMDI and DFHMSD BMS map definitions (see pages 441 and 448).

FRSET specifies that the modified data tags (MDTs) of all fields currently in the 3270 buffer are to be reset to the unmodified condition (that is, field reset) before any map data is written to the buffer.

This allows the ATTRB operand of DFHMDF for the requested map to control the final status of fields written or rewritten in response to a BMS command, if no other attribute information has been written in the symbolic map.

When using the FRSET option refer to CTRL on page 438 for a description of the option priority.

LENGTH(data-value) specifies the length of the data to be formatted as a halfword binary value.

If the data area sending the map is longer than the data to be mapped, LENGTH should be specified. This should include the length of the 12-byte prefix generated by the TIOAPFX=YES option on the DFHMDI and DFHMSD BMS map definitions (see pages 441 and 448). For a description of a safe upper limit, see “LENGTH options” on page 5.

MAP(name) specifies the name (1–7 characters) of the map to be used.

MAPPINGDEV(data-value) specifies the name of a 3270 terminal whose BMS characteristics match those of the terminal to which the data will eventually be sent using a SEND TEXT MAPPED command or a terminal control SEND or CONVERSE.

MAPONLY specifies that only default data from the map is to be written.

MAPSET(name) specifies the unsuffixed name (1–7 characters) of the mapset to be used. The mapset must reside in the CICS program library. The mapset can be defined either by using RDO or by program autoinstall when the mapset is first used. If this option is not specified, the name given in the MAP option is assumed to be that of the mapset.

The number of maps per mapset is limited to a maximum of 9998.

PRINT specifies that a print operation is to be started at a 3270 printer or at a 3275 with the printer adapter feature, or that data on an LTYPE2 (3274/76 or 3790) is to be printed on a printer allocated by the controller. If this option is omitted, the data is sent to the printer buffer but is not printed.

When using the PRINT option, refer to CTRL on page 438 for a description of the option priority.

SET(ptr-ref) specifies the pointer to be set to the address of the mapped data.

The storage area containing the mapped data has the same format as the page buffer returned when using the SET option in the full BMS SEND command. See the description of the MAPPINGDEV facility in the CICS Application Programming Guide for more guidance about using the SET option.

Conditions

Some of the following conditions may occur in combination. If more than one occurs, only the first is passed to the application program.

INVMPSZ occurs if the specified map is too wide for the terminal specified by MAPPINGDEV or if a HANDLE CONDITION OVERFLOW command is active and the specified map is too long for the terminal specified by MAPPINGDEV.

Default action: terminate the task abnormally.

INVREQ occurs if the terminal specified by MAPPINGDEV does not exist, does not support BMS, or is not a 3270 printer or display.

Default action: terminate the task abnormally.
SEND PAGE

Send last page of data. Only supplied by full BMS. For further information about BMS, see the CICS Application Programming Guide.

Options

ALL
specifies that if the ATTN key on a 2741 is pressed while a BMS logical message is being sent to the terminal, and the WRBRK condition is not active, transmission of the current page is to cease and no additional pages are to be transmitted. The logical message is deleted.

AUTOPAGE
specifies that each page of a BMS logical message is to be sent to the terminal as soon as it is available. If paging on request is specified for the terminal by the RDO TYPETERM option AUTOPAGE(NO), AUTOPAGE overrides it for this logical message.

FMHPARM *(name)*
specifies the name (1–8 characters) of the outboard map to be used. This option applies only to 3650 logical units with outboard formatting.

LAST
specifies that this is the last output operation for a transaction and, therefore, the end of a bracket. If RELEASE is specified, LAST is assumed unless the SEND PAGE command is terminating a routing operation. This option applies to logical units only.

NOAUTOPAGE
specifies that pages of a BMS logical message are to be sent one at a time to the terminal. BMS sends the first page to the terminal when the terminal becomes available or on request of the terminal operator. Subsequent pages are sent to the terminal in response to requests from the terminal operator. (Refer to the CICS Supplied Transactions manual for more information about terminal operator paging commands.) If automatic paging is specified for the terminal by the RDO TYPETERM option AUTOPAGE(YES), NOAUTOPAGE overrides it for this logical message. For logical units, NOAUTOPAGE applies to all pages for all LDCs in the logical message.

RELEASE

RETRAN

TRANSID(name)

TRAILER(data-area)

SET(ptr-ref)

OPERPURGE

CURRENT

LAST

Conditions: IGREQCD, INVREQ, RETPAGE, TSIOERR, WRBRK
OPERPURGE
specifies that CICS is to delete the BMS logical message only when the terminal operator requests deletion. If the option is omitted, CICS deletes the message if the operator enters data that is not a paging command.

RELEASE
specifies that, after the SEND PAGE command, control is to be returned to CICS.

RETAI N
specifies that after the SEND PAGE command, control is returned to the application program when the operator has finished displaying the pages.

SET(ptr-ref)
specifies the pointer to be set to the address of the output data.

The SET option specifies that the last or only page is returned to the application program. The pointer is set to the address of the current page. A list of addresses is created and, if the ROUTE command is in operation, there is an address entry for each device. If the ROUTE command is not in operation, the list contains only the one entry. See the description of the SET option in the section about full BMS in the CICS Application Programming Guide for more guidance on using the SET option.

The application program regains control either immediately following the SEND PAGE command (if the current page is not yet completed), or at the label specified in a HANDLE CONDITION RETPAGE command if the page has been completed.

If TIOAPFX=YES is specified in the map definition, the pointer returned contains the address of the TIOA prefix. The user data starts at offset X’0C’ from the start of the TIOA prefix.

TRAILER(data-area)
specifies the text data area that contains trailer data to be placed at the bottom of the last page only. The format of the trailer is:

2 bytes Binary length of the data (n)
2 bytes Binary zero
n bytes Data.

See the CICS Application Programming Guide for more information.

TRANSID(name)
specifies the transaction identifier (1–4 alphanumeric characters) to be used with the next input message from the terminal the task is attached to. The identifier must have been defined to CICS via a RDO TRANSACTION resource definition. TRANSID is valid only if SEND PAGE RELEASE is specified.

If this option is specified in a program that is not at the highest logical level, the specified transaction identifier is used only if a new transaction identifier is not provided in another SEND PAGE command (or in a RETURN program control command) issued in a program at a higher logical level.

Conditions

IGREQCD
occurs when an attempt is made to execute a SEND PAGE command after a SIGNAL data-flow control command with a request change direction (RCD) code has been received from an LUTYPE4 logical unit.

Default action: terminate the task abnormally.

INVREQ
RESP2 values:

200 Command not allowed for a distributed program link server program.

also occurs (RESP2 not set) in any of the following situations:

- The disposition (TERMINAL, PAGING, or SET) of a BMS logical message is changed prior to its completion by the SEND PAGE command.
- Text data is output to the same partition or LDC as mapped data while a BMS logical message is active. If neither partitions nor LDCs are in use, text data is output to the same logical message as mapped data.
- The TRAILER option is specified when terminating a logical message built with SEND MAP commands only.
- During overflow processing data is sent to a different LDC from the LDC that caused page overflow.
- The length of the trailer is negative.

Default action: terminate the task abnormally.

RETPAGE
occurs if the SET option is specified and the last or only completed page is ready for return to the application program.

Default action: return control to the application program at the point immediately following the BMS SEND PAGE command.

TSIOERR
occurs if there is an unrecoverable temporary storage input/output error.

Default action: terminate the task abnormally.

WRBRK
occurs if the SEND PAGE command is interrupted by the terminal operator pressing the ATTN key. It applies only to the 2741 Communication Terminal, and only if write break is supported for CICS.

Default action: ignore the condition.
SEND PARTNSET

This command is available on standard and full BMS only. For further information about BMS, see the *CICS Application Programming Guide*.

```
SEND PARTNSET (name)
```

Conditions: INVPARTNSET, INVREQ

Description

SEND PARTNSET associates the partition set specified by the PARTNSET option with the application program. If the partition set name is omitted, the terminal is reset to the base (unpartitioned) state.

Note: A SEND PARTNSET command must not be followed immediately by a RECEIVE command. The two commands must be separated by a SEND MAP, SEND TEXT, or SEND CONTROL command, so that the partition set is sent to the terminal.

Conditions

The following conditions may occur together. If both occur, only the first one is passed to the application program.

INVPARTNSET
- Occurs if the partition set named in the SEND PARTNSET command is not a valid partition set (for example, it may be a mapset).
- Default action: terminate the task abnormally.

INVREQ
- RESP2 values:
 - **200** Command not allowed for a distributed program link server program.

 Also occurs (RESP2 not set) in the following situation:
 - A SEND PARTNSET command is issued while a logical message is active.
 - Default action: terminate the task abnormally.
SEND TEXT

Send data without mapping. The keywords are separated into those supported by standard and full BMS. For further information about BMS, see the *CICS Application Programming Guide*.

Standard BMS:

\[
\begin{align*}
\text{SEND TEXT} & \quad \text{SEND TEXT} \\
\text{FROM} & \quad \text{LENGTH} & \quad \text{CURSOR} & \quad \text{FORMFEED} \\
\text{ERASE} & \quad \text{DEFAULT} & \quad \text{PRINT} & \quad \text{FREEKB} & \quad \text{ALARM} & \quad \text{NLEOM} & \quad \text{FMHPARM(name)} \\
\text{OUTPARTN(name)} & \quad \text{ACTPARTN(name)} & \quad \text{MSR(data-value)}
\end{align*}
\]

Full BMS:

\[
\begin{align*}
\text{SEND TEXT} & \quad \text{SEND TEXT} \\
\text{TERMINAL} & \quad \text{SET(ptr-ref)} & \quad \text{REQID(name)} & \quad \text{HEADER(data-area)} & \quad \text{TRAILER(data-area)} \\
\text{PAGING} & \quad \text{TERMINAL} & \quad \text{WAIT} & \quad \text{LAST} \\
\text{JUSTIFY(data-value)} & \quad \text{JUSTIFY} & \quad \text{L4} & \quad \text{L64} & \quad \text{L80} \\
\text{JUSFIRST} & \quad \text{JUSLAST} & \quad \text{ACCUM}
\end{align*}
\]

Conditions: IGREQCD, IGREQID, INVLDC, INVPARTN, INVREQ, LENGERR, RETPAGE, TSIOERR, WRBRK

Description

SEND TEXT sends text data without mapping. The text is split into lines of the same width as the terminal, such that words are not broken across line boundaries. If the text exceeds a page, it is split into pages that fit on the terminal with application-defined headers and trailers.

When using the SEND TEXT command with any of the ALARM, FREEKB, FRSET, HONEOM, L40, L64, L80, or PRINT options, see CTRL on page 438 for a description of the option priority.

Options

ACCUM

Specifies that this command is one of a number of commands that are used to build a logical message. The logical message is completed by a SEND PAGE command, or deleted by a PURGE MESSAGE command.

HEADER, JUSFIRST, JUSLAST, JUSTIFY and TRAILER all imply ACCUM.

ACTPARTN(name)

Specifies the name (1–2 characters) of the partition to be activated. Activating a partition moves the cursor into the specified partition, and unlocks the keyboard for the specified partition.

This option is ignored if the target terminal does not support partitions, or if there is no application partition set.

ALARM

Specifies that the 3270 audible alarm feature is to be activated. For logical units supporting FMHs (except...
interactive and batch logical units), ALARM instructs BMS to set the alarm flag in the FMH.

ALTERNATE

sets the terminal to use the ALTERNATE screen size.

CURSOR(data-value)

specifies the location to which the 3270 or 3604 cursor is to be returned on completion of a SEND TEXT command.

The data value must be a halfword binary value that specifies the cursor position relative to zero; the range of values that can be specified depends on the size of the screen being used.

This option overrides any IC option of the ATTRB operand of DFHMDF. If ACCUM is being used, the most recent value of CURSOR specified is used to position the cursor.

The value specified in the CURSOR option must be positive. A negative value leads to unpredictable results.

DEFAULT

sets the terminal to use the DEFAULT screen size.

ERASE

specifies that the screen printer buffer or partition is to be erased and the cursor returned to the upper left corner of the screen. (This option applies only to the 3270, or 8775, and to the 3604 Keyboard Display.)

The first output operation in any transaction, or in a series of pseudoconversational transactions, should always specify ERASE. For transactions attached to 3270 screens or printers, unless explicitly overridden by the DEFAULT or ALTERNATE option, this also ensures that the correct screen size is selected, as defined for the transaction by the SCRNSIZE option in the RDO PROFILE definition.

FMHPARM(name)

specifies the name (1–8 characters) of the outboard map to be used. (This option applies only to 3650 logical units with outboard formatting.)

FORMFEED

specifies that a new page is required. For 3270 printers and displays, the FORMFEED character is positioned at the start of the buffer. The application program must thus ensure that this buffer position is not overwritten by map or text data. It is ignored if the target terminal does not support FORMFEED (that is, the RDO TYPETERM option FORMFEED was not used).

The FORMFEED option can appear on any SEND TEXT ACCUM command. You need only specify it once within a physical page because it always forces a FORMFEED at the start of the physical page. To force a FORMFEED at the start of a particular SEND TEXT ACCUM command, use the JUSFIRST option instead.

FREEKB

specifies that the 3270 keyboard should be unlocked after the data is written. If FREEKB is omitted, the keyboard remains locked.

When using the FREEKB option, refer to CTRL on page 438 for a description of the option priority.

Note that the keyboard lock status is maintained separately for each partition on a terminal that supports partitions.

FROM(data-area)

specifies the data area containing the data to be sent.

HEADER(data-area)

specifies the header data to be placed at the beginning of each page of text data. The format of the header is:

- **2 bytes** Binary length of the data (n).
- **1 byte** Page numbering required or not (blank).
- **1 byte** Reserved field.
- **n bytes** Data.

See the *CICS Application Programming Guide* for more information.

HONEOM

specifies that the default printer line length is to be used. This length should be the same as that specified using the RDO TYPETERM options PAGESIZE or ALTPAGE, and the same as the printer platen width; otherwise the data may not format correctly.

When using the HONEOM option, refer to CTRL on page 438 for a description of the option priority.

JUSFIRST

specifies that the text data is to be placed at the top of the page. Any partially formatted page from previous requests is considered to be complete. If the HEADER option is specified, the header precedes the data. See also the description of the JUSTIFY option.

JUSLAST

specifies that the text data is to be positioned at the bottom of the page. The page is considered to be complete after the request has been processed. If the TRAILER option is specified, the trailer follows the data. See also the description of the JUSTIFY option.

JUSTIFY(data-value)

specifies the line of the page at which the text data is to be positioned. The data value must be a halfword binary value in the range 1 through 240. Although they may not be specified as constants, the special values −1 and −2 can be supplied dynamically to signify JUSFIRST or JUSLAST, respectively.

LAST

specifies that this is the last output operation for a transaction and, therefore, the end of a bracket. This option applies to logical units only.
LDC(name)

specifies a 2-character mnemonic to be used to determine the logical device code (LDC) to be transmitted in the FMH to the logical unit. The mnemonic identifies an LDC entry defined by a DFHTCT TYPE=LDC macro.

When an LDC is specified, BMS uses the device type, the page size, and the page status associated with the LDC mnemonic to format the message. These values are taken from the extended local LDC table for the logical unit, if it has one. If the logical unit has only a local (unextended) LDC table, the values are taken from the system LDC table. The numeric value of the LDC is obtained from the local LDC table, unless this is an unextended table and the value is not specified, in which case it is taken from the system table.

LENGTH(data-value)

specifies the length of the data to be sent as a halfword binary value. For a description of a safe upper limit, see “LENGTH options” on page 5.

L40, L64, or L80

specifies the line length for a 3270 printer; a carrier return and line feed are forced after 40, 64, or 80 characters have been printed on a line. Unacceptable results are likely if this differs from the page width specified by the RDO TYPETERM options PAGESIZE or ALTPAGE.

When using the options, refer to CTRL on page 438 for a description of the option priority.

MSR(data-value)

specifies the 4-byte data value that controls the 10/63 magnetic stripe reader attached to an 8775 or 3643 terminal. A set of constants is provided in DFHMSRCA to assist in setting this 4-byte area. See “Magnetic slot reader (MSR) control value constants, DFHMSRCA” on page 423 for a complete list. This option is ignored if the RDO TYPETERM option MSRCONTROL was not used.

NLEOM

specifies that data for a 3270 printer or a 3275 display with the printer adapter feature should be built with blanks and new-line (NL) characters, and that an end-of-message (EM) character should be placed at the end of the data. As the data is printed, each NL character causes printing to continue on the next line, and the EM character terminates printing.

This option must be specified in the first SEND TEXT command used to build a logical message. The option is ignored if the device receiving the message (direct or routed) is not one of those mentioned above.

If this option is used, buffer updating and attribute modification of fields previously written into the buffer are not allowed. CICS includes the ERASE option with every write to the terminal.

The NL character occupies a buffer position. A number of buffer positions, equivalent to the value of the RDO TYPETERM options PAGESIZE or ALTPAGE for that terminal, is unavailable for data. This may cause data to wrap around in the buffer; if this occurs, the PGESIZE value must be reduced.

The NLEOM option overrides the ALARM option if the latter is present.

OUTPARTN(name)

specifies the name (1–2 characters) of the partition to which data is to be sent. This option is ignored if the terminal does not support partitions, or if there is no application partition set associated with the terminal. If there is an application partition set, and the OUTPARTN option is omitted, data is sent to the partition named by the PARTN operand of the DFHMSD or DFHMDI map definition. If maps are not used, or if there is no PARTN operand, the output is sent to the first partition in the partition set.

PAGING

specifies that the output data is not to be sent immediately to the terminal, but is to be placed in temporary storage and displayed in response to paging commands entered by the terminal operator.

If PAGING is specified with a REQID that is defined as recoverable in the temporary storage table (TST), CICS provides message recovery for logical messages if the task has reached a syncpoint.

PRINT

specifies that a print operation is to be started at a 3270 printer or at a 3275 with the printer adapter feature, or that data on an LUTYPE2 (3274/76 or 3790) is to be printed on a printer allocated by the controller. If this option is omitted, the data is sent to the printer buffer but is not printed.

When using the PRINT option, refer to CTRL on page 438 for a description of the option priority.

REQID(name)

specifies a 2-character prefix to be used as part of a temporary storage identifier for CICS message recovery. Only one prefix can be specified for each logical message. The default prefix is **.

BMS message recovery is provided for a logical message only if the PAGING option is specified in the BMS SEND commands and if the syncpoint has been reached.

SET(ptr-ref)

specifies the pointer to be set to the address of the data. It specifies that completed pages are to be returned to the application program. The pointer is set to the address of a list of completed pages. See the description of the SET option in the section full-function BMS in the CICS Application Programming Guide for more guidance about using the SET option.

The application program regains control either immediately following the BMS SEND command (if the current page is not yet completed), or at the label...
specified in a HANDLE CONDITION RETPAGE command if the page has been completed.

If TIOAPFX=YES is specified in the map definition, the pointer returned contains the address of the TIOA prefix. The user data starts at offset X’0C’ from the start of the TIOA prefix.

TERMINAL
specifies that data is to be sent to the terminal that originated the transaction.

TRAILER(data-area)
specifies the text data area that contains trailer data to be placed at the bottom of each output page. The format of the trailer is:

- **2 bytes** Binary length of the data (n)
- **1 byte** Page numbering required or not (blank)
- **1 byte** Reserved field
- **n bytes** Data

See the *CICS Application Programming Guide* for more information.

WAIT
specifies that control should not be returned to the application program until the output operation has been completed.

If WAIT is not specified, control returns to the application program when the output operation has started. A subsequent input or output command (terminal control, BMS, or batch data interchange) causes the application program to wait until the previous command has been completed.

Conditions

IGREQCD
occurs when an attempt is made to execute a SEND TEXT command after a SIGNAL data-flow control command with a request change direction (RCD) code has been received from an LUTYPE4 logical unit.

Default action: terminate the task abnormally.

IGREQID
occurs if the prefix specified in the REQID option on a BMS SEND command is different from that established by a previous REQID option, or by default for this logical message—REQID (**).

Default action: terminate the task abnormally.

INVLDC
occurs if the specified LDC mnemonic is not included in the LDC list for the logical unit.

Default action: terminate the task abnormally.

INVPARTN
occurs if the specified partition is not defined in the partition set associated with the application program.

Default action: terminate the task abnormally.

INVREQ

RESP2 values:

- **200** Command not allowed for a distributed program link server program.

also occurs (RESP2 not set) in any of the following situations:

- Text data is output to the same partition or LDC as mapped data while a BMS logical message is active. If neither partitions nor LDCs are in use, text data is output to the same logical message as mapped data.
- During overflow processing, data is sent to a different LDC from the LDC that caused page overflow.
- The length of a header on a SEND TEXT command is negative.
- The length of a trailer on a SEND TEXT command is negative.

Default action: terminate the task abnormally.

LENGERR

occurs if an out-of-range value is supplied in the LENGTH option.

Default action: terminate the task abnormally.

RETPAGE

occurs if the SET option is specified and a completed page is ready for return to the application program.

Default action: return control to the application program at the point immediately following the BMS SEND TEXT command.

TSIOERR

occurs if there is an irrecoverable temporary storage input/output error.

Default action: terminate the task abnormally.

WRBRK

occurs if a SEND command is interrupted by the terminal operator pressing the ATTN key. It applies only to the 2741 Communication Terminal, and only if write break is supported for CICS.

Default action: ignore the condition.
SEND TEXT MAPPED

Send data with mapping. Only supplied by full BMS. For further information about BMS, see the *CICS Application Programming Guide*.

Description

SEND TEXT MAPPED sends a page of a device-dependent data stream previously built by BMS, and returned to the application program with the SET option.

It must only be used to send data previously generated by a BMS SEND command specifying the SET option. It references a 4-byte page control area (PGA) that BMS placed at the end of the device-dependent data stream.

The length of the device-dependent data stream set in the TIOATDL field of the page buffer returned by the SET option does not include the PGA. The LENGTH option of the SEND TEXT MAPPED command should be set from this TIOATDL, and hence does not include the PGA. However, if the application program copies the page buffer returned by the SET option, it should include the PGA in the copied data.

This command is only supported by full BMS.

Options

- **FROM(data-area)** specifies the data area containing the data to be sent.
- **LAST** specifies that this is the last output operation for a transaction and, therefore, the end of a bracket. This option applies to logical units only.
- **LENGTH(data-value)** specifies the length of the data to be formatted as a halfword binary value. For a description of a safe upper limit, see “LENGTH options” on page 5.
- **PAGING** specifies that the output data is not to be sent immediately to the terminal, but is to be placed in temporary storage and displayed in response to paging commands entered by the terminal operator.
- **REQID(name)** specifies a 2-character prefix to be used as part of a temporary storage identifier for CICS message recovery. Only one prefix can be specified for each logical message. The default prefix is "**".
- **TERMINAL** specifies that input data is to be sent to the terminal that originated the transaction.
- **WAIT** specifies that control should not be returned to the application program until the output operation has been completed.

If PAGING is specified with a REQID that is defined as recoverable in the temporary storage table (TST), CICS provides message recovery for logical messages if the task has reached a syncpoint.

- **REQID(name)** specifies a 2-character prefix to be used as part of a temporary storage identifier for CICS message recovery. Only one prefix can be specified for each logical message. The default prefix is "**".

BMS message recovery is provided for a logical message only if the PAGING option is specified in the BMS SEND commands and if the syncpoint has been reached.

- **TERMINAL** specifies that input data is to be sent to the terminal that originated the transaction.
- **WAIT** specifies that control should not be returned to the application program until the output operation has been completed.

If WAIT is not specified, control returns to the application program when the output operation has started. A subsequent input or output command (terminal control, BMS, or batch data interchange) causes the application program to wait until the previous command has been completed.

Conditions

- **IGREQCD** occurs when an attempt is made to execute a SEND TEXT command after a SIGNAL data-flow control command with a request change direction (RCD) code has been received from an LUTYPE4 logical unit.

Default action: terminate the task abnormally.
SEND TEXT MAPPED

IGREQID
occurs if the prefix specified in the REQID option on a
BMS SEND command is different from that established
by a previous REQID option, or by default for this logical
message—REQID (**).

Default action: terminate the task abnormally.

INVREQ
RESP2 values:

200 A distributed program link server application
specified the function-shipping session (its
principal facility) on the CONVID option.

Default action: terminate the task abnormally.

TSIOERR
occurs if there is an irrecoverable temporary storage
input/output error.

Default action: terminate the task abnormally.

WRBRK
occurs if a SEND command is interrupted by the
terminal operator pressing the ATTN key. It applies only
to the 2741 Communication Terminal, and only if write
break is supported for CICS.

Default action: ignore the condition.
Description

SEND TEXT NOEDIT sends a page of a device-dependent data stream built by the application program. The data stream cannot contain structured fields. This command differs from a terminal control SEND, because the data stream may be written to temporary storage and interfaced to the terminal operator paging transaction (using the PAGING option). Also the device-dependent data stream can be sent to a partition (using the OUTPARTN option).

If the OUTPARTN option is specified, the data stream is sent to the specified partition. This command is used to output a user-generated data stream. It differs from a terminal control SEND in that data may be output to temporary storage (using the PAGING option), or routed like any other BMS data.

When using the SEND TEXT NOEDIT command with any of the ALARM, FREEKB, FRSET, HONEOM, L40, L64, L80, or PRINT options, see CTRL on page 438 for a description of the option priority.

This command is supported on full BMS only.

Options

DEFAULT
sets the terminal to use the DEFAULT screen size.

ERASE
specifies that the screen printer buffer or partition is to be erased and the cursor returned to the upper left corner of the screen. (This option applies only to the 3270, or 8775, and to the 3604 Keyboard Display.)

The first output operation in any transaction, or in a series of pseudoconversational transactions, should always specify ERASE. For transactions attached to 3270 screens or printers, unless explicitly overridden by the DEFAULT or ALTERNATE option, this also ensures that the correct screen size is selected, as defined for the transaction by the SCRNSIZE option in the RDO PROFILE definition.

FREEKB
specifies that the 3270 keyboard should be unlocked after the data is written. If FREEKB is omitted, the keyboard remains locked.

Note that the keyboard lock status is maintained separately for each partition on a terminal that supports partitions.

When using the FREEKB option, refer to CTRL on page 438 for a description of the option priority.

FROM(data-area)
specifies the data area containing the data to be sent.

HONEOM
specifies that the default printer line length is to be used. This length should be the same as that specified using the RDO TYPETERM options PAGESIZE or ALTPAGE, and the same as the printer platen width; otherwise the data may not format correctly.
When using the HONEOM option, refer to CTRL on page 438 for a description of the option priority.

LAST specifies that this is the last output operation for a transaction and, therefore, the end of a bracket. This option applies to logical units only.

LENGTH(data-value)
specifies the length of the data to be sent as a halfword binary value. For a description of a safe upper limit, see “LENGTH options” on page 5.

L40, L64, or L80 specifies the line length for a 3270 printer; a carrier return and line feed are forced after 40, 64, or 80 characters have been printed on a line. Unacceptable results are likely if this differs from the page width specified by the RDO TYPETERM options PAGESIZE or ALTPAGE.

When using the options, refer to CTRL on page 438 for a description of the option priority.

OUTPARTN(name)
specifies the name (1–2 characters) of the partition to which data is to be sent. This option is ignored if the terminal does not support partitions, or if there is no application partition set associated with the terminal. If there is an application partition set, and the OUTPARTN option is omitted, data is sent to the partition named by the PARTN operand of the DFHMSD or DFHMDI map definition. If maps are not used, or if there is no PARTN operand, the output is sent to the first partition in the partition set.

PAGING specifies that the output data is not to be sent immediately to the terminal, but is to be placed in temporary storage and displayed in response to paging commands entered by the terminal operator.

If PAGING is specified with a REQID that is defined as recoverable in the temporary storage table (TST), CICS provides message recovery for logical messages if the task has reached a syncpoint.

PRINT specifies that a print operation is to be started at a 3270 printer or at a 3275 with the printer adapter feature, or that data on an LUTYPE2 (3274/76 or 3790) is to be printed on a printer allocated by the controller. If this option is omitted, the data is sent to the printer buffer but is not printed.

When using the PRINT option, refer to CTRL on page 438 for a description of the option priority.

REQID(name)
specifies a 2-character prefix to be used as part of a temporary storage identifier for CICS message recovery. Only one prefix can be specified for each logical message. The default prefix is **.

TERMINAL specifies that the data is to be sent to the terminal that originated the transaction.

WAIT specifies that control should not be returned to the application program until the output operation has been completed.

If WAIT is not specified, control returns to the application program when the output operation has started. A subsequent input or output command (terminal control, BMS, or batch data interchange) causes the application program to wait until the previous command has been completed.

Conditions

IGREQCD occurs when an attempt is made to execute a SEND TEXT command after a SIGNAL data-flow control command with a request change direction (RCD) code has been received from an LUTYPE4 logical unit.

Default action: terminate the task abnormally.

IGREQID occurs if the prefix specified in the REQID option on a BMS SEND command is different from that established by a previous REQID option, or by default for this logical message—REQID (**).

Default action: terminate the task abnormally.

INVPARTN occurs if the specified partition is not defined in the partition set associated with the application program.

Default action: terminate the task abnormally.

INVREQ

RESP2 values:

200 Command not allowed for a distributed program link server program.

also occurs (RESP2 not set) in any of the following situations:

- Text data is output to the same partition or LDC as mapped data while a BMS logical message is active. If neither partitions nor LDCs are in use, text data is output to the same logical message as mapped data.
- During overflow processing, data is sent to a different LDC from the LDC that caused page overflow.
- The length of a header on a SEND TEXT command is negative.
- The length of a trailer on a SEND TEXT command is negative.

Default action: terminate the task abnormally.
TSIOERR
occurs if there is an irrecoverable temporary storage
input/output error.
Default action: terminate the task abnormally.

WRBRK
occurs if a SEND command is interrupted by the
terminal operator pressing the ATTN key. It applies only
to the 2741 Communication Terminal, and only if write
break is supported for CICS.
Default action: ignore the condition.
SIGNOFF

SIGNOFF

Sign off from a terminal.

Command: SIGNOFF

Condition: INVREQ

Description

SIGNOFF enables you to sign off from the terminal or principal facility that you previously signed on to. When sign-off is complete, the terminal reverts to the security capabilities and operator characteristics associated with the default user for this CICS region. The national language reverts to the national language of the default user, if defined, or the national language associated with the definition of the terminal.

Other resource managers

When this command is executed, CICS immediately recognizes the sign-off and establishes the default attributes for the terminal. The transaction (and any associated task-related user exits, function shipping, or distributed transaction processing) may have invoked other resource managers (RMs), for example, IMS, DB2®, or VSAM. It is unpredictable whether these other RMs recognize the sign-off before the transaction terminates.

The default attributes apply for all RMs invoked by subsequent transactions at the terminal.

Conditions

INVREQ

RESP2 values:

1 No user is currently signed on. This could be because the CICS ESM is not initialized.
2 There is no terminal with this task.
3 This task's terminal has preset security.
4 Sign-off is attempted using transaction routing without using the CRTE transaction.
18 The CICS ESM interface is not initialized.
200 Command not allowed for a distributed program link server program.

Default action: terminate the task abnormally.
SIGNON

Sign on to a terminal.

```
SIGNON--USERID(data-value) ──ESMREASON(data-area) ──ESMRESP(data-area) ──GROUPID(data-value)
└┘ ──LANGUAGECODE(data-value) ──LANGINUSE(data-area) ──NATLANGINUSE(data-area)
└┘ ──PASSWORD(data-value) ──NEWPASSWORD(data-value) ──OIDCARD(data-value)
```

Conditions: INVREQ, NOTAUTH, USERIDERR

Description

SIGNON associates the security capabilities and operator characteristics of the specified user with the terminal. It allows all types of terminal, with the exception of APPC, to be signed on to. SIGNON signs on to the terminal or principal facility associated with the issuing transaction.

There is no implied sign-off with the SIGNON command. If you want to sign on a user at a terminal to which a user is already signed on, you must first issue a SIGNOFF command. Note that there is no default value for the USERID option.

PASSWORD is used as a parameter which means that if there is a dump it may become visible. You should therefore clear the field as soon as possible after using PASSWORD.

Other resource managers

When this command is executed, CICS immediately recognizes the sign-on and establishes the specified user’s security and operating attributes for the terminal. The transaction (and any associated task-related user exits, function shipping, or distributed transaction processing) may have invoked other resource managers (RMs), for example, IMS, DB2, or VSAM. It is unpredictable whether these other RMs recognize the sign-on before the transaction terminates.

The new user attributes apply for all RMs invoked by subsequent transactions at the terminal.

Options

If an optional input field contains all blanks, it is ignored.

ESMREASON(data-area)

returns the reason code, in a fullword binary field, that CICS receives from the external security manager.

If the ESM is RACF, this field is the RACF reason code.

ESMRESP(data-area)

returns the response code, in a fullword binary field, that CICS receives from the external security manager.

If the ESM is RACF, this field is the RACF return code.

GROUPID(data-value)

assigns, to a RACF user group, the user that is being signed on. This overrides, for this session only, the default group name specified for the user in the RACF database.

If specified, this value, and the USERID, may be propagated to remote systems. See the CICS RACF Security Guide for information on implementing LU6.2 security for remote users.

LANGUAGECODE(data-value)

specifies the national language that the user being signed on wants CICS to use. You specify the language as a standard 3-character IBM code. This is an alternative to the 1-character code that you specify on the NATLANG option.

See Appendix I, “National language codes” on page 419 for possible values of the code.

LANGINUSE(data-area)

the LANGINUSE option allows an application program to receive the national language chosen by the sign-on process. The language is identified as a standard three-character IBM code, instead of the one-character code used by NATLANGINUSE. It is an alternative to the existing NATLANGINUSE option.

See Appendix I, “National language codes” on page 419 for possible values of the code.

NATLANG(data-value)

specifies a 1-character field identifying the national language the user wants to use during the signed-on session.
SIGNON

See Appendix I, “National language codes” on page 419 for possible values of the code.

NATLANGINUSE(data-area)
specifies a one character the national language used during the signed-on session. The current implementation always returns the character “E” (U.S. English), which corresponds to the language supplied in the NATLANG option. NATLANGINUSE corresponds to the following (in order of decreasing priority):

- The language supplied in the NATLANG option of the SIGNON command.
- The language associated with the user. This is specified in the ESM language segment.
- The language associated with the definition of the terminal.
- The language associated with the default USERID for the CICS region.
- The default language specified in the system initialization parameters.

See Appendix I, “National language codes” on page 419 for possible values of the code.

NEWPASSWORD(data-value)
specifies an optional 8-byte field defining a new password. This option is only valid if PASSWORD is also specified.

OIDCARD(data-value)
specifies an optional 65-byte field containing further security data from a magnetic strip reader (MSR) on 32xx devices.

PASSWORD(data-value)
specifies an 8-byte password required by the external security manager (ESM).

USERID(data-value)
specifies the 8-byte sign-on USERID.

Conditions

INVREQ

- **RESP2 values:**
 - 9 The terminal is already signed on.
 - 10 No terminal is associated with this task.
 - 11 This task’s terminal has preset security.
 - 12 The response from CICS security modules is unrecognized.
 - 13 There is an unknown return code in ESMRESP from the external security manager; or the external security manager (ESM) is not active, or has failed in an unexpected way.
 - 14 The required national language is not available.

- **RESP:**
 - 15 Signon was attempted using transaction routing without using the CRTE transaction.
 - 18 The CICS ESM interface is not initialized (SEC=NO specified as a System initialization parameter).
 - 25 The terminal is of an invalid type.
 - 26 An error occurred during SNSCOPE checking. The limit of MVS ENQ requests was reached.
 - 27 The external security manager (ESM) is not active.
 - 28 The required national language is invalid.
 - 29 The user is already signed on. This relates to the sign-on scope checking.
 - 200 Command not allowed for a distributed program link server program.

Default action: terminate the task abnormally.

NOTAUTH

RESP2 values:

- **RESP2 values:**
 - 1 A password is required.
 - 2 The supplied password is wrong.
 - 3 A new password is required.
 - 4 The new password is not acceptable.
 - 5 An OIDCARD is required.
 - 6 The supplied OIDCARD is wrong.
 - 16 The USERID is not authorized to use this terminal.
 - 17 The USERID is not authorized to use the application.
 - 19 The USERID is revoked.
 - 20 The USERID’s access to the specified group has been revoked.
 - 21 The sign-on failed during SECLABEL checking.
 - 22 The sign-on failed because the ESM is not currently accepting sign-on.
 - 23 The GROUPID is not known to the ESM.
 - 24 The USERID is not contained in the GROUPID.

Default action: terminate the task abnormally.

USERIDERR

RESP2 values:

- **RESP2 values:**
 - 8 The USERID is not known to the external security manager.
 - 30 The USERID is all blanks or nulls.

Default action: terminate the task abnormally.
SPOOLCLOSE

Close a spool report.

Description

The SPOOLCLOSE command closes a CICS spool report and, optionally, changes its retention characteristics. If more than one transaction is trying to read reports from JES, SPOOLCLOSE should not be immediately followed by SPOOLOPEN. It should be followed by a WAIT, so that other transactions can use the interface.

A default disposition is taken if both KEEP and DELETE are omitted from the SPOOLCLOSE command, or if the report is closed implicitly by a SYNCPOINT or RETURN command:

- When an INPUT report is explicitly closed by a SPOOLCLOSE command, the default disposition is DELETE.
- In all other cases, the default disposition is KEEP.

Options

DELETE

For an INPUT report, DELETE specifies that the next report is to be read on the subsequent OPEN INPUT.

For an OUTPUT report, DELETE specifies that the report is to be purged.

KEEP

For an INPUT report, KEEP specifies that the report is to be read again when SPOOLOPEN INPUT is next issued.

For an OUTPUT report, KEEP specifies that the report is to be sent to its destination node.

TOKEN(data-area)

specifies the 8-character CICS-allocated token used to identify a report.

Conditions

Note: There are no default actions.

ALLOCERR

occurs in any of the following situations:

- Dynamic allocation has rejected a request to allocate an input data set.

RESP2 gives the dynamic allocation response code that denotes this error. The first two characters are the information reason code (S99INFO), and the second two are the error reason code (S99ERROR), as defined in the MVS/ESA Application Development Guide: Authorized Assembler Language Programs, GC28-1645.

INVREQ

RESP2 values:

- 4 Unsupported language.
- 8 Unsupported function.
- 40 Subsystem interface already enabled.

Note: Errors 1024 and over are internal, and should not occur. If one of these error codes is returned, contact your IBM support center.

NOSPOOL

RESP2 values:

- 4 No subsystem present.
- 8 Interface being disabled; CICS is quiescing.
- 12 Interface has been stopped.

NOSTG

occurs in any of the following situations:

- A GETMAIN has failed within the JES interface subtask (DFHPSPSS).

RESP2 gives the GETMAIN register 15 return code.

NOTFND

RESP2 values:
SPOOLCLOSE

1024 Input or output function has been corrupted, and SPOOLCLOSE could not complete.

NOTOPEN

RESP2 values:

8 Data set has not been opened.

STRELERR

occurs in any of the following situations:

• A FREEMAIN has failed within the JES interface subtask (DFHPSPSS).
 RESP2 gives the FREEMAIN register 15 return code.
SPOOLOPEN INPUT

Open a spool report.

Description

The SPOOLOPEN INPUT command opens a spool report for input from the system spooler to CICS.

It prepares to get (read) an existing spool data set directly using external writer name (USERID) and specified class.

Another task could have allocated a spool file for input. In this case, you should retry after a suitable time interval.

When this command has been successfully executed, you should read the report and proceed to CLOSE as soon as possible, in order to permit other users to use the JES single thread. If SPOOLCLOSE is not issued before transaction end or SYNCPOINT, CICS performs an implicit SPOOLCLOSE KEEP, and writes a message to CSMT to alert the system programmer to the possible unnecessary retention of resources. You should not SPOOLOPEN a data set using this command until you are prepared to process it completely.

This command, if successful, returns a token, which is used later to identify the report in SPOOLREAD and SPOOLCLOSE commands.

Options

CLASS(data-value)

specifies a 1-character class designation. The CLASS operand can be used as a selection parameter for input reports. If it is omitted, the first report for the specified USERID is obtained, regardless of its class.

TOKEN(data-area)

specifies the 8-character CICS-allocated token used to identify a report.

USERID(data-value)

specifies the 8-character user identifier. It must begin with the same 4 characters as the CICS generic applid, so that CICS can check that users are not attempting to access data sets not intended for their CICS system.

Conditions

Note: There are no default actions.

ALLOCERR

occurs in any of the following situations:

- Dynamic allocation has rejected a request to allocate an input data set.

 RESP2 gives the dynamic allocation response code that denotes this error. The first two characters are the information reason code (S99INFO), and the second two are the error reason code (S99ERROR), as defined in the MVS/ESA Application Development Guide: Authorized Assembler Language Programs, GC28-1645.

ILLOGIC

RESP2 values:

3 Invalid CLASS value specified.

INVREQ

RESP2 values:

4 Unsupported language.

8 Unsupported function.

16 USERID missing.

36 INPUT|OUTPUT missing.

40 Subsystem interface already enabled.

Note: Errors 1024 and over are internal, and should not occur. If one of these error codes is returned, contact your IBM Support Center.

NOSPOOL

RESP2 values:

4 No subsystem present.

8 Interface being disabled; CICS is quiescing.

12 Interface has been stopped.
SPOOLOPEN INPUT

NOSTG
occurs in any of the following situations:
- A GETMAIN has failed within the JES interface subtask (DFHPSPSS).
 RESP2 gives the GETMAIN register 15 return code.

NOTAUTH
occurs in any of the following situations:
- An application has issued a SPOOLOPEN INPUT command with an unauthorized USERID. For the USERID to be authorized, its first four characters must match the first four characters of the current CICS applid id.

NOTFND
RESP2 values:
4 No data sets could be located for retrieval for the specified external writer name.
1024 Input or output function has been corrupted, and SPOOLCLOSE could not complete.

NOTOPEN
RESP2 values:
8 Data set has not been opened or a task which has not issued the SPOOLOPEN for a spool data set has attempted to access it.
1024 Subtask OPEN macro failure.

OPENERR
RESP2 values:
4 A VSAM SHOWCB macro failed to return the lengths of the VSAM control blocks used to access the JES spool file.

Also occurs (RESP2 not set) in any of the following situations:
- An internal error occurred during SPOOLOPEN processing that has forced the request to fail.

SPOLBUSY
RESP2 values:
4 Interface already in use by another task.
8 Interface already in use by current task.

Also occurs (RESP2 not set) in any of the following situations:
- The JES/input single thread within the JES interface was not available.

SPOLERR
occurs in any of the following situations:
- The subsystem interface macro (IEFSSREQ) has failed. No input data set name was selected.
 RESP2 gives the ‘IEFSSREQ’ response code.

STRELERR
occurs in any of the following situations:
- A FREEMAIN has failed within the JES interface subtask (DFHPSPSS).
 RESP2 gives the FREEMAIN register 15 return code.
SPOOLOPEN OUTPUT

Open a spool report for output.

Description

The SPOOLOPEN OUTPUT command opens a spool report for output from CICS to the system spooler and defines its characteristics.

It results in a dynamic allocation of the output file using the nodeid to specify the remote destination and the userid to specify the remote user. As this is a multithread output request, requesters of this service could interleave. This SPOOLOPEN OUTPUT command enables users to acquire the token for a report that it expects to create (write). This token is used to identify the report in later SPOOLWRITE and SPOOLCLOSE commands.

When printing on a local device, use the NOCC|ASA|MCC options to control output formatting. If you do not specify a format, the default value of NOCC is used. NODE and USERID can be used to write the data set directly to the local spool file only if specified with a value of ‘*’.

If you do not issue SPOOLCLOSE before the end of the transaction, CICS performs an implicit SPOOLCLOSE DELETE and writes a message to CSMT to alert you to the possible unnecessary retention of resources.

Note: If you retrieve a formatted data set, the system spooler could have changed the data set format. For example, the system spooler could have converted an MCC format data set to ASA format during data set creation. This does not affect the final printed output.

Options

ASA
specifies that the report has each record prefixed with an ASA carriage-control character, and this character must be used by the operating system to control formatting when the report is printed.

CLASS(data-value)
specifies a 1-character class designation. If it is omitted, class A is assumed.

MCC
specifies that the report has each record prefixed with an IBM machine command code carriage-control character, and this character must be used by the operating system to control formatting when the report is printed.

NOCC
specifies that the report has no internal formatting controls. When the report is printed, the operating system prefixes each record with a carriage-control character that causes page skipping according to the default operating system lines-per-page value.

NODE(data-value)
specifies the 8-character identifier of a destination node that the system spooler uses to route the file. It is a sender field.

OUTDESCR(ptr-ref)
(MVS/SP—JES2 Version 3, or JES3 Version 4.2.1 only, or a later upward-compatible release) specifies a pointer variable to be set to the address of a string of parameters to the OUTPUT statement of JCL. This is called double indirect addressing. The user must set up the pointer, the address field, and the string. This means that the OUTDESCR option cannot be used from within CECI. The format of the string is:

Offset Length Contents
/zerodot 4 Length (n) of following text string
4 n OUTPUT statement parameters

The parameters use the same keywords and values as the OUTPUT statement but the syntax varies slightly. The following is the format of the OUTDESCR parameter string:

keyword1(value1) [keyword2(value2)] [keyword3(value3,value4)] ...
SPOOL OPEN OUTPUT

This corresponds to the following OUTPUT statement parameter string:

```
keyword1=value1 [keyword2=value2]
[keyword3=(value3,value4)] ...
```

For details of valid keywords and values, see the TSO/E Command Reference manual (SC28-1991-0).

The OUTDESCR operand:
- Can override the NODE and USERID operands only if they are specified with a value of '*'.
- Cannot override the CLASS operand, even if it is omitted and defaults to class A.

Use this operand to set additional attributes for the spool data set.

PRINT
| allows large records (maximum 32760 bytes) to be written to the spool. This is the default setting. This is included for compatibility with the spool support provided with CICS/DOS/VS and CICS Transaction Server for OS/390.

PUNCH
must be specified if the CLASS parameter for the output data set implies punch, and the data set is destined for a VM/RSCS node. This ensures that the record length indicator is set to 80, which is a requirement of VM/RSCS for punch files.

RECORDLENGTH(data-value)
specifies, as a halfword binary variable, the maximum length of record to write to a print data set. The default value is 32760.

TOKEN(data-area)
specifies the 8-character CICS-allocated token used to identify a report.

USERID(data-value)
specifies the 8-character identifier of the destination userid that processes the report. The report carries this identifier, which is used to select the report at its destination. It is a sender field and must be declared with a length of 8 characters.

Validity checking is performed for USERID. Checks are made for blanks (X'40'), and nulls (X'00').

Sending the internal reader buffer directly to JES:
Instead of waiting for the buffer in your address space to fill up, send the contents of the internal reader buffer directly to JES by coding as your last record:

```
/ *EOF
```

This control statement delimits the job in the data set, and makes it eligible for immediate processing.

For more information about using the internal reader, and about other */ control statements, see the MVS/ESA JCL User's Guide.

Conditions

Note: There are no default actions.

ALLOCERR
occurs in any of the following situations:
- Dynamic allocation has rejected a request to allocate an input data set.

RESP2 gives the dynamic allocation response code that denotes this error. The first two characters are the information reason code (S99INFO), and the second two are the error reason code (S99ERROR), as defined in the MVS/ESA Application Development Guide: Authorized Assembler Language Programs, GC28-1645.

ILLOGIC
occurs in any of the following situations:
- Invalid CLASS value specified.

INVREQ
RESP2 values:
- 4 Unsupported language.
- 8 Unsupported function.
- 16 USERID missing.
- 20 NODE missing.
- 36 INPUT|OUTPUT missing.
- 40 Subsystem interface already enabled.

Note: Errors 1024 and over are internal, and should not occur. If one of these error codes is returned, contact your IBM support center.

- 44 Error in the OUTDESCR string.
- 48 OUTDESCR specified but function not available (wrong level of CICS or JES).
- 52 OUTDESCR specified but bad pointer found on keyword or in OUTDESCR condition.

LENGERR
occurs in any of the following situations:
- RECORDLENGTH not in the range 0 through 32760. RESP2 shows the incorrect value.

NODEIDERR
occurs in any of the following situations:
- JES cannot identify the NODE/USERID combination specified on SPOOL OPEN OUTPUT.

RESP2 gives the dynamic allocation response code that denotes this error. The first two characters are the information reason code (S99INFO), and the second two are the error reason code (S99ERROR), as defined in the MVS/ESA Application Development Guide: Authorized Assembler Language Programs, GC28-1645.
<table>
<thead>
<tr>
<th>Command</th>
<th>RESP2 Values</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOSPOOL</td>
<td></td>
<td>RESP2 values:</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>No subsystem present.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Interface being disabled; CICS is quiescing.</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Interface has been stopped.</td>
</tr>
<tr>
<td>NOSTG</td>
<td></td>
<td>Occurs in any of the following situations:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A GETMAIN has failed within the JES interface subtask (DFHPSPSS). RESP2 gives the GETMAIN register 15 return code.</td>
</tr>
<tr>
<td>NOTFND</td>
<td></td>
<td>RESP2 values:</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>No data sets could be located for retrieval for the specified external writer name.</td>
</tr>
<tr>
<td>NOTOPEN</td>
<td></td>
<td>RESP2 values:</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Data set has not been opened.</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>Subtask OPEN macro failure.</td>
</tr>
<tr>
<td>OPENERR</td>
<td></td>
<td>RESP2 values:</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>A VSAM SHOWCB macro failed to return the lengths of the VSAM control blocks used to access the JES spool file.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Also occurs (RESP2 not set) in any of the following situations:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An internal error occurred during SPOOLOPEN processing that has forced the request to fail.</td>
</tr>
<tr>
<td>OUTDESCRERR</td>
<td></td>
<td>Occurs in any of the following situations:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The macro OUTADD or OUTDEL (invoked as a result of the OUTDESCR specification) failed. RESP2 gives the reason code from the OUTADD or OUTDEL macro. See the MVS/ESA Application Development Guide: Authorized Assembler Language Programs, GC28-1845, for descriptions of codes.</td>
</tr>
<tr>
<td>SPOLBUSY</td>
<td></td>
<td>RESP2 values:</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Interface already in use by another task.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Interface already in use by current task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Also occurs in any of the following situations:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The JES/input single thread within the JES interface was not available.</td>
</tr>
</tbody>
</table>

STRELERR

occurs in any of the following situations:

- A FREEMAIN has failed within the JES interface subtask (DFHPSPSS).
- RESP2 gives the FREEMAIN register 15 return code.
The SPOOLREAD command obtains the next record from the system spooler.

```
SPOOLREAD—TOKEN(data-area)—INTO(data-area)
       MAXLENGTH(data-value)
       TOLENGTH(data-area)
       NOHANDLE
       RESP
       RESP2
```

Conditions: ALLOCERR, ENDFILE, ILLOGIC, INVREQ, LENGERR, NOSPOOL, NOSTG, NOTFND, NOTOPEN, SPOLBUSY, SPOLERR, STRELERR

Options

INTO(data-area)
specifies the data area for the variable-length data. It is a receiver field.

MAXLENGTH(data-value)
specifies, as a fullword binary variable, the maximum length of data transferred. This is set by the user on input. The limit of length is 32760 bytes. This is the maximum size of the CICS buffer used to read a record.

TOLENGTH(data-area)
specifies, as a fullword binary variable, the length of the data that is transferred. This is set by CICS on input. It is optional and, if it is omitted, you are not notified of the actual length of the data received.

TOKEN(data-area)
specifies the 8-character CICS-allocated token used to identify a report.

Conditions

Note: There are no default actions.

ALLOCERR
occurs in any of the following situations:

- Dynamic allocation has rejected a request to allocate an input data set.

 RESP2 gives the dynamic allocation response code that denotes this error. The first two characters are the information reason code (S99INFO), and the second two are the error reason code (S99ERROR), as defined in the *MVS/ESA Application Development Guide: Authorized Assembler Language Programs*, GC28-1645.

ENDFILE
occurs in any of the following situations:

- All data for the current spool file being read has been retrieved. You should proceed to issue a SPOOLCLOSE command as soon as possible, to release the lock on the JES single thread, and to terminate current SYSOUT data set processing.

 ILLOGIC

 RESP2 values:

 - 3 Invalid CLASS value specified.

 INVREQ

 RESP2 values:

 - 4 Unsupported language.
 - 8 Unsupported function.
 - 12 Read attempt after end of file.
 - 24 INTO missing.
 - 40 Subsystem interface already enabled.

 Note: Errors 1024 and over are internal, and should not occur. If one of these error codes is returned, contact your IBM support center.

 LENGERR

 occurs in any of the following situations:

 - You provided insufficient buffer space to read your record, or you requested more than the maximum allowable buffer size of 32760 bytes (the size of a CICS buffer used to read a record). If the buffer space is too small, it receives as much data as possible. The amount of data truncated is then placed in the RESP2 field. If the TOLENGTH operand is specified, the actual length of the record is placed here.

 Note: In the event of a length error due to insufficient buffer space, the next record is not read until the error has been corrected and the current record reread.

 RESP2 indicates the amount of data truncated, or shows zero if the MAXLENGTH field is greater than the buffer size.
than the maximum allowable buffer size 32760 bytes.

NOSPOOL
RESP2 values:

4 No subsystem present.
8 Interface being disabled; CICS is quiescing.
12 Interface has been stopped.

NOSTG
occurs in any of the following situations:

- A GETMAIN has failed within the JES interface subtask (DFHPSPSS).
 RESP2 gives the GETMAIN register 15 return code.

NOTFND
RESP2 values:

4 No data sets could be located for retrieval for the specified external writer name.

NOTOPEN
RESP2 values:

8 Data set has not been opened.
12 Attempt to read an output file.
1024 Subtask OPEN macro failure.

SPOLBUSY
RESP2 values:

4 Interface already in use by another task.
8 Interface already in use by current task.

Also occurs (RESP2 not set) in any of the following situations:

- The JES/input single thread within the JES interface was not available.

SPOLERR
occurs in any of the following situations:

- The subsystem interface macro (IEFSSREQ) has failed. No input data set name was selected.
 RESP2 gives the 'IEFSSREQ' response code.

STRELERR
occurs in any of the following situations:

- A FREEMAIN has failed within the JES interface subtask (DFHPSPSS).
 RESP2 gives the FREEMAIN register 15 return code.
SPOOLWRITE

SPOOLWRITE

The SPOOLWRITE command writes data to a spool report.

```
SPOOLWRITE TOKEN(data-area) FROM(data-area)
```

Options

FLENGTH(data-value)

specifies the fullword binary variable that is to be set to the length of the data that is transferred. This is set by the user on output. It is optional and, if it is omitted, CICS uses the length of the data area.

For OS/VS COBOL users, **FLENGTH** is mandatory.

FROM(data-area)

specifies the data area from which to take the variable length data. The data itself is not altered in any way by CICS. **FROM** is a sender field.

LINE|PAGE

specifies the format of the data to be sent. The default action is **LINE**.

The **PAGE** option must be used to correctly format information for the advanced function printer (AFP™) page printing devices. If a customer is creating MIXED mode type data, that is **LINE** records and X'5A' (AFPDS or MODCA) pagemode records, the **LINE** or **PAGE** operand must match the type record being written to spool.

TOKEN(data-area)

specifies the 8-character CICS-allocated token used to identify a report. It is a receiver on SPOOLOPEN and a sender on all other commands.

Conditions

Note: There are no default actions.

ALLOCERR

occurs in any of the following situations:

- Dynamic allocation has rejected a request to allocate an input data set.

RESP2 gives the dynamic allocation response code that denotes this error. The first two characters are the information reason code (S99INFO), and the second two are the error reason code (S99ERROR), as defined in the *MVS/ESA Application Development Guide: Authorized Assembler Language Programs, GC28-1645*.

INVREQ

RESP2 values:

- 4 Unsupported language.
- 8 Unsupported function.
- 28 **FROM** missing.
- 40 Subsystem interface already enabled.

Note: Errors 1024 and over are internal, and should not occur. If one of these error codes is returned, contact your IBM support center.

LENGERR

occurs in any of the following situations:

- The value specified in the **FLENGTH** parameter on a SPOOLWRITE command is not in the valid range 1 to RECORDLENGTH value specified or defaulted at the SPOOLOPEN data set. If the buffer space is too small, it receives as much data as possible.

RESP2 contains the difference between **FLENGTH** and RECORDLENGTH, or zero if **FLENGTH** is negative or greater than 32760.

NOSPOOL

RESP2 values:

- 4 No subsystem present.
- 8 Interface being disabled; CICS is quiescing.
- 12 Interface has been stopped.

NOSTG

occurs in any of the following situations:

- A GETMAIN has failed within the JES interface subtask (DFHPSPSS).

RESP2 gives the GETMAIN register 15 return code.

NOTOPEN

RESP2 values:

- 8 Spool report has not been opened.
16 Attempt to write an input file.
1024 Subtask OPEN macro failure.

SPOLBUSY
RESP2 values:

- 4 Interface already in use by another task.
- 8 Interface already in use by current task.

Also occurs (RESP2 not set) in any of the following situations:
- The JES/input single thread within the JES interface was not available.

SPOLEERR
occurs in any of the following situations:

- The subsystem interface macro (IEFSSREQ) has failed. No input data set name was selected.
 RESP2 gives the ‘IEFSSREQ’ response code.

STRELERR
occurs in any of the following situations:

- A FREEMAIN has failed within the JES interface subtask (DFHPSPSS).
 RESP2 gives the FREEMAIN register 15 return code.
START

Start task at a specified time.

Description

START starts a task, on a local or remote system, at a specified time. The time is specified by INTERVAL, AFTER, AT or TIME. See the section about expiration times in the CICS Application Programming Guide.

The starting task may pass data to the started task. The starting task may also specify a terminal to be used by the started task as its principal facility.

The default is INTERVAL(0), but for C the default is AFTER HOURS(0) MINUTES(0) SECONDS(0).

Note that CEDF is an exception to the START command and is not valid as a TRANSID name. You should therefore not attempt to start CEDF in this way.

You can use the RTRANSID, RTERMID, and QUEUE options to pass further data to the started task. These options can contain arbitrary data values whose meanings depend on what you have specified in the started and starting tasks. One possible way of using them is in the following situation. One task can start a second task, passing it a transaction name and a terminal name to be used when the second task starts a third task. The first task may also pass the name of a queue to be accessed by the second task.

One or more constraints have to be satisfied before the transaction to be executed can be started, as follows:

- The specified interval must have elapsed or the specified expiration time must have been reached. (For more information, see the CICS Application Programming Guide.) The INTERVAL or AFTER options should be specified when a transaction is to be executed on a remote system; this avoids complications arising when the local and remote systems are in different time zones.

- If the TERMD option is specified, the named terminal must exist and be available. If the named terminal does not exist when the time interval expires, the START is discarded.

- If the PROTECT option is specified, the starting task must have taken a successful syncpoint. This option, coupled to extensions to system tables, reduces the exposure to lost or duplicated data caused by failure of a starting task.

- If the transaction to be executed is on a remote system, the format of the data must be declared to be the same as that at the local system. This is done using the RDO...
options DATASTREAM and RECORDFORMAT. For CICS-CICS, these are always the default values. For CICS-IMS/VS, care should be taken to specify the correct values.

Execution of a START command naming a transaction in the local system cancels any outstanding POST commands executed by the starting task.

START commands can be queued by specifying the LOCALQ option on the RDO TRANSACTION resource definition, as described in the CICS Resource Definition Guide.

Passing data by interval control: If data is to be passed by interval control (using the FROM option), it is queued on a temporary storage queue. The REQID option allows you to specify the name of the temporary storage queue to be used. This identifier may be recoverable (in temporary storage terms) or nonrecoverable. The CICS Resource Definition Guide describes how to define recoverable temporary storage queues.

If you also specify the PROTECT option, the temporary storage queue identified by the REQID option should be defined as recoverable. If you do not specify the PROTECT option, the temporary storage queue should not be defined as recoverable. Unpredictable results can occur if these rules are not followed (see the CICS Recovery and Restart Guide).

An IOERR will occur if a START operation uses a REQID(name) that corresponds with a TSQID in a PUTQ-TSQUEUE. No IOERR occurs if the REQID is the same as a TSQID of a PUT-TSQUEUE.

If you specify the FROM and not the REQID option, a default ‘DF’ prefix temporary storage queue is used. The same rules apply as above: only specify the PROTECT option if you define the ‘DF’ prefix temporary storage queues as recoverable.

Error checking and performance considerations: The NOCHECK option specifies that no response (to execution of the START command) is expected by the starting transaction. For START commands naming tasks to be started on a local system, error conditions are returned; error conditions are not returned for tasks to be started on a remote system. The NOCHECK option allows CICS to improve performance when the START command has to be shipped to a remote system; it is also a prerequisite if the shipping of the START command is queued pending the establishing of links to the remote system.

Starting tasks without terminals: If the task to be started is not associated with a terminal, each START command results in a separate task being started. This happens regardless of whether or not data is passed to the started task. The following examples show how to start a specified task, not associated with a terminal, in one hour:

```cics
EXEC CICS START
  TRANSID('TRNL')
  INTERVAL(10000)
  REQID('NONGL')

EXEC CICS START
  TRANSID('TRNL')
  AFTER HOURS(1)
  REQID('NONGL')
```

Starting tasks with terminals but without data: Only one task is started if several START commands, each specifying the same transaction and terminal, expire at the same time or before the terminal is available.

The following examples show how to request initiation of a task associated with a terminal. Because no request identifier is specified in these examples, CICS assigns one and returns it to the application program in the EIBREQID field of the EXEC interface block.

```cics
EXEC CICS START
  TRANSID('TRN1')
  TIME(185/00000)
  TERMID('STA5')

EXEC CICS START
  TRANSID('TRN1')
  AT HOURS(18) MINUTES(50)
  TERMID('STA5')
```

Starting tasks with terminals and data: Data is passed to a started task if one or more of the FROM, RTRANSID, RTERMID, and QUEUE options is specified. Such data is accessed by the started task by using a RETRIEVE command.

It is possible to pass many data records to a new task by issuing several START commands, each specifying the same transaction and terminal.

Execution of the first START command ultimately causes the new task to be started and allows it to retrieve the data specified on the command. The new task is also able to retrieve data specified on subsequently executed START commands that expire before the new task is terminated. If the transaction has been defined as restartable (by defining the transaction using the RDO option RESTART(YES)) and such data has not been retrieved before the new task is terminated, another new task is started and is able to retrieve the outstanding data. If the subsequent new task fails to retrieve the outstanding data, a third task will be started and so on, up to a maximum of five times, after which the data is discarded. If the transaction has not been defined as restartable, no new task is initiated and the data is discarded.
The following examples show how to start a task associated with a terminal and pass data to it:

```
EXEC CICS START
   TRANSID('TRN2')
   TIME(173/zerodot/zerodot)
   TERMID('STA3')
   REQID(DATAREC)
   FROM(DATAFLD)
   LENGTH(1/zerodot/zerodot)
   :
EXEC CICS START
   TRANSID('TRN2')
   AT HOURS(17) MINUTES(3/zerodot)
   TERMID('STA3')
   REQID(DATAREC)
   FROM(DATAFLD)
   LENGTH(100)
   :
```

When using the C language, you are recommended to use the AFTER/AT HOURS, MINUTES, and SECONDS options as C does not provide a packed decimal data type. You may use INTERVAL or TIME, but if the value specified is not an integer constant, the application is responsible for ensuring that the value passed to CICS is in packed decimal format.

Dynamically routed transactions started by START commands: Some transactions started by a subset of START commands can be dynamically routed to a remote region. For general information about dynamic transaction routing, and specific information about which transactions started by START commands are eligible for dynamic routing, see the CICS Intercommunication Guide.

START failures without exception conditions: There are some circumstances in which a START command is executed without error, but the started task never takes place:

- When the transaction or its initial program is disabled at the time CICS attempts to create the task.
- When the START specifies a terminal and an expiration time, and the terminal is not defined (and cannot be located by the XICTENF or XALTENF exits) at expiration time.
- When the START specifies a terminal that is not defined (and cannot be located by the XICTENF or XALTENF exits) at the time CICS attempts to create the task.

These exposures result from the delay between the execution of the START and the time of task creation. Even when the START is immediate, CICS may delay creating the task, either because the required terminal is not free or because of other system constraints.

You can use INQUIRE commands to ensure that the transaction and program are enabled at the time of the START command, but either may become disabled before task creation.

You get a TERMDERR condition if the requested terminal does not exist at the time of the START, but if it is deleted subsequently, as occurs if the user logs off, your START request is discarded with the terminal definition.

Options

AFTER

specifies the interval of time that is to elapse before the new task is started.

There are two ways to enter the time under AFTER and AT.

1. A combination of at least two of HOURS(0–99), MINUTES(0–59), and SECONDS(0–59). HOURS(1) SECONDS(3) would mean one hour and three seconds (the minutes default to zero).
2. As one of HOURS(0–99), MINUTES(0–5999), or SECONDS(0–359999). HOURS(1) means one hour. MINUTES(62) means one hour and two minutes. SECONDS(3723) means one hour, two minutes, and three seconds.

AT

specifies the time at which the new task is to be started. For the ways to enter the time, see the AFTER option.

FMH

specifies that the user data to be passed to the started task contains function management headers. This is not valid for LUTYPE2 or LUTYPE3 terminals.

FROM(data-area)

specifies the data to be stored for a task that is to be started at some future time.

HOURS(data-value)

specifies a fullword binary value in the range 0–99. This is a suboption of the AFTER and AT options. For its use and meaning, see the AFTER option.

INTERVAL(hhmmss)

specifies the expiration time as an interval of time that is to elapse from the time at which the START command is issued. The mm and ss are each in the range 0–59. The time specified is added to the current clock time by CICS when the command is executed, to calculate the expiration time.

LENGTH(data-value)

specifies a halfword binary data value that is the length of the data to be stored for the new task.

MINUTES(data-value)

specifies as a fullword binary value the number of minutes for use in conjunction with AFTER or AT. The value must be in the range 0 through 59 if HOURS or SECONDS is also specified, or in the range 0 through 5999 otherwise. This is a suboption of the AFTER and AT options. For its use and meaning, see the AFTER option.
NOCHECK
specifies that, for a remote system, CICS should improve performance of the START command by providing less error checking and slightly less function.
For more information, see the section about improving the performance of intersystem START requests in the CICS Intercommunication Guide.

PROTECT
specifies that the new task is not started until the starting task has taken a syncpoint. If the starting task abends before the syncpoint is taken, the request to start the new task is canceled. If the REQID option is also specified, the request identifier should be a name defined as recoverable to temporary storage. If the started transaction is remote, PROTECT specifies that it must not be scheduled until the local transaction has successfully completed a syncpoint. For more information about the PROTECT option with remote transactions, see the CICS Intercommunication Guide.

QUEUE(name)
specifies the name (1–8 characters) of a temporary storage queue that may be used by the started transaction.
If you are also specifying REQID, make sure that the name of the REQID and the name of the QUEUE are not the same.

REQID(name)
specifies a name (1–8 characters), which must be unique, to identify a command. This option can be used when another task is to be provided with the capability of canceling an unexpired command.
If this option is omitted, CICS generates a unique request identifier in the EIBREQID field of the EXEC interface block, unless the NOCHECK option is specified, in which case field EIBREQID is set to nulls and cannot be used subsequently to cancel the START command.
If you include any of the data options (FROM, RTERMIN, RTRANSID or QUEUE), the data is stored in a TS queue using the REQID name specified (or CICS generated) as the identifier. The queue record thus identified must be local to the CICS system where the START command is processed. The START command is processed on the system identified by the SYSID option or, if the SYSID option is omitted, on the system associated with the TRANSID option.
You cannot specify a REQID value that already exists for another start request that has not yet expired.

RTERMIN(name)
specifies a value (1–4 characters), for example a terminal name, that may be retrieved when the transaction, specified in the TRANSID option in the START command, is started.
When retrieved, the value may be used in the TERMIN option of a subsequent START command.

RTRANSID(name)
specifies a value (1–4 characters), for example a transaction name, that may be retrieved when the transaction, specified in the TRANSID option in the START command, is started.
When retrieved, the value may be used in the TRANSID option of a subsequent START command.

SECONDS(data-value)
specifies a fullword binary value in the range 0–59, when HOURS or MINUTES are also specified, or 0–359,999 when SECONDS is the only option specified. This is a suboption of the AFTER and AT options. For its use and meaning, see the AFTER option.

SYSID(systemname)
specifies the name of the system to which the request is directed.

TERMIN(name)
specifies the symbolic identifier (1–4 alphanumeric characters) of the principal facility associated with a transaction to be started as a result of a START command. This principal facility can be either a terminal (the usual case) or an APPC session. Where an APPC session is specified, the connection (or modeset) name is used instead of a terminal identifier. This option is required when the transaction to be started must communicate with a terminal; it should be omitted otherwise.
The terminal identifier must be defined as either a local or a remote terminal on the system in which the START command is executed, when the start of the transaction takes effect.

TIME(hhmmss)
specifies the time when a new task should be started.
When using the C language, you are recommended to use the AFTER/AT HOURS, MINUTES, and SECONDS options as C does not provide a packed decimal data type. You may use TIME, but if the value specified is not an integer constant, the application is responsible for ensuring that the value passed to CICS is in packed decimal format.

TRANSID(name)
specifies the symbolic identifier (1–4 characters) of the transaction to be executed by a task started as the result of a START command.
If SYSID is specified, and names a remote system, the transaction is assumed to be on that system irrespective of whether or not the transaction definition is defined as remote in the PCT. Otherwise the transaction definition is used to find out whether the transaction is on a local or a remote system.

USERID(data-value)
Specifies the userid under whose authority the started transaction is to run, if the started transaction is not
START

associated with a terminal (that is, when TERMID is not specified). This is referred to as userid1.

If you omit both TERMID and USERID, CICS uses instead the userid under which the transaction that issues the START command is running. This is referred to as userid2.

By using either userid1 or userid2 CICS ensures that a started transaction always runs under a valid userid, which must be authorized to all the resources referenced by the started transaction.

CICS performs a surrogate security check against userid2 to verify that this user is authorized to userid1. If userid2 is not authorized, CICS returns a NOTAUTH condition. The surrogate check is not done here if USERID is omitted.

Conditions

INVREQ

RESP2 values:

4	The value specified in HOURS, for AFTER or AT options, is out of range.
5	The value specified in MINUTES, for AFTER or AT options, is out of range.
6	The value specified in SECONDS, for AFTER or AT options, is out of range.
18	A USERID is specified and the CICS external security manager interface is not initialized.

Also occurs (RESP2 not set) in any of the following situations:

- The START command is not valid for processing by CICS.
- Values specified in the INTERVAL option are out of range.

Default action: terminate the task abnormally.

IOERR

occurs in any of the following situations:

- An input/output error occurred during a START operation.
- A START operation attempts to write to a temporary storage queue when the DFHTEMP dataset is full.
- A START operation uses a REQID name that already exists. This condition only occurs when the FROM option is also used.

Default action: terminate the task abnormally.

ISCINVREQ

occurs when the remote system indicates a failure that does not correspond to a known condition.

Default action: terminate the task abnormally.

LENGERR

occurs if LENGTH is not greater than zero.

Default action: terminate the task abnormally.

NOTAUTH

RESP2 values:

| 7 | A resource security check fails on TRANSID (name). |
| 9 | A surrogate user security check fails on USERID (name). |

The security access capabilities of the transaction that issued the command do not allow the command to be performed with the value specified in the USERID option. The security access capabilities of the transaction have been established by the external security manager according to user security, and whether link security or the execution diagnostic facility (EDF) have been in use.

Default action: terminate the task abnormally.

SYSIDERR

occurs when the SYSID option specifies a name that is neither the local system nor a remote system (made known to CICS by defining a CONNECTION).

SYSIDERR also occurs when the link to the remote system is known but unavailable. This condition may not be raised if the user exit XISLCLQ is enabled (see the CICS Customization Guide for programming information).

Default action: terminate the task abnormally.

TERMIDERR

occurs if the terminal identifier in a START command cannot be found in the terminal control table.

Default action: terminate the task abnormally.

TRANSIDERR

occurs if the transaction identifier specified in a START command cannot be found in the program control table.

Default action: terminate the task abnormally.

USERIDERR

RESP2 values:

| 8 | The specified USERID is not known to the external security manager. |
| 10 | The external security manager is in a state such that CICS cannot determine whether a specified USERID is valid. |

Default action: terminate the task abnormally.
START ATTACH

Start a task immediately.

\[
\text{EXEC CICS START ATTACH} \\
\quad \text{TRANSID('TRNL')} \\
\quad \text{FROM(DATAFLD)} \\
\quad \text{LENGTH(100)} \\
\]

Conditions: INVREQ, LENGERR, NOTAUTH, TRANSIDERR

Description

START ATTACH starts a non-terminal task immediately in the local CICS region.

The attached task has a STARTCODE of U and cannot be cancelled, so EIBREQID is set to nulls.

ATTACH allows a START issued in a PLTPI program to take effect before initialization has completed.

The starting task may pass data to the started task using the FROM option.

Starting tasks with data: If data is to be passed it is not written to a temporary storage queue; only its address is passed.

The attached task retrieves data in the normal way. The task issuing the START must ensure that the data is valid when it is retrieved, either by synchronizing its execution with the attached task, or by placing the data in shared storage.

Each START ATTACH command results in a separate task being started, whether or not data is passed to the started task. The following example shows how to start a specified task, and pass data to it:

Options

FROM(data-area)

specifies the data to be passed to a started task.

LENGTH(data-value)

specifies a halfword binary data value that is the length of the data to be passed to a started task.

TRANSID(name)

specifies the symbolic identifier (1–4 characters) of the transaction to be executed by a task started as the result of a START ATTACH command.

Conditions

INVREQ

RESP2 values:

- 11 An attempt was made to route a START ATTACH request.
- 12 A START ATTACH request has failed.

Default action: terminate the task abnormally.

LENGERR

occurs if LENGTH is not greater than zero.

Default action: terminate the task abnormally.

NOTAUTH

RESP2 values:

- 7 A resource security check fails on TRANSID (name).

Default action: terminate the task abnormally.

TRANSIDERR

occurs if the transaction identifier specified in a START command has not been defined to CICS.

Default action: terminate the task abnormally.
START BREXIT

Start task in the 3270 bridge environment and associate it with the named bridge exit.

```
START BREXIT(BREXIT(name)) TRANSID(name) BRDATA(data-area) BRDATALENGTH(data-value) USERID(data-value)
```

Conditions: INVREQ, LENGERR, NOTAUTH, PGMIDERR, TRANSIDERR, USERIDERR

Description

START BREXIT starts a task immediately in the local CICS region, and initializes the specified transaction (TRANSID) and bridge exit (BREXIT).

In the 3270 bridge environment, all 3270 terminal requests issued by the transaction specified by TRANSID, are intercepted and passed to the user-replaceable program (the bridge exit) specified by BREXIT.

The bridge exit (BREXIT) emulates the 3270 interface by passing the terminal requests to a client application that may be executing inside or outside of CICS.

See CICS External Interfaces Guide for more information about the 3270 bridge and its interfaces.

The attached task cannot be CANCELled; its STARTCODE is defined by the bridge exit.

Passing data to the bridge exit: Data can be passed to the bridge exit using the BRDATA and BRDATALENGTH options.

The following example shows how to start a specified task, in the 3270 bridge environment and pass data to its bridge exit:

```
EXEC CICS START BREXIT('DFHOCBRE')
   TRANSID('TRNL')
   BRDATA('BRSD')
   BRDATALENGTH(72)
```

Options

BREXIT(name)

specifies the name (1-8 characters) of the bridge exit to be associated with the started task. If no name is specified, the value of BREXIT on the TRANSACTION resource definition for TRANSID is used.

BRDATA(data-area)

specifies the data to be passed to the bridge exit specified by BREXIT when the task is started.

BRDATALENGTH(data-value)

specifies a fullword binary data value that is the length of the BRDATA to be passed to the bridge exit specified by BREXIT when the task is started.

TRANSID(name)

specifies the symbolic identifier (1–4 characters) of the transaction to be executed by a task started as the result of a START BREXIT command. The transaction will be started in the 3270 bridge environment, and will execute in association with the bridge exit specified in BREXIT.

USERID(data-value)

Specifies the userid under whose authority the started transaction is to run.

Conditions

INVREQ

RESP2 values:

- 11 An attempt was made to route a START BREXIT request.
- 12 A START BREXIT request has failed.
- 18 A USERID is specified and the CICS external security manager interface is not initialized.

Default action: terminate the task abnormally.

LENGERR

occurs if BRDATALENGTH is not greater than zero.

Default action: terminate the task abnormally.

NOTAUTH

RESP2 values:

- 7 A resource security check fails on TRANSID (name).

334 CICS Application Programming Reference
A surrogate user security check fails on USERID (name).

The security access capabilities of the transaction that issued the command do not allow the command to be performed with the value specified in the USERID option.

Default action: terminate the task abnormally.

PGMIDERR
occurs if no name is supplied by the BREXIT option and the transaction definition for TRANSID does not provide a default BREXIT name.

Default action: terminate the task abnormally.

TRANSIDERR
occurs if the transaction identifier specified in a START BREXIT command has not been defined to CICS.

Default action: terminate the task abnormally.

USERIDERR
RESP2 values:

8 The specified USERID is not known to the external security manager.

10 The external security manager is in a state such that CICS cannot determine whether a specified USERID is valid.

Default action: terminate the task abnormally.
STARTBR

Start browse of a file.

Description
STARTBR specifies the record in a file, or in a data table, on a local or a remote system, where you want the browse to start. No records are read until a READNEXT command (or, for VSAM and tables, a READPREV command) is executed.

A browse operation, where direct means browse of the base data set (using the primary key), may be:

- A direct browse of a key sequenced data set (KSDS or data-table) by record key.
- A direct browse of an entry sequenced data set (ESDS) by relative byte address (RBA).
- A direct browse of a relative record data set (RRDS) by relative record number (RRN).
- A browse of a key sequenced data set (KSDS) using an alternate index path.
- A browse of an entry sequenced data set (ESDS) using an alternate index path. In this case, an ESDS is browsed by key in the same way as a KSDS. Some of the options that are not valid for a direct ESDS browse are valid for an alternate index browse.
- A browse of a KSDS by RBA.

The options specified on the STARTBR command define the characteristics that apply throughout the subsequent browse operation. Specifically, if GENERIC or GTEQ are specified, they are used not only when determining the starting point of the browse, but also whenever the value of RIDFLD is changed before issuing a READNEXT command.

If you specify the RBA option, it applies to every READNEXT or READPREV command in the browse, and causes CICS to return the relative byte address of each retrieved record.

None of these options can be changed during a browse, except by means of the RESETBR command.

If a STARTBR request specifies the precise key at which the browse is to start (that is, it specifies a full key and the EQUAL keyword) the record returned on the following READNEXT (or READPREV) may not be the same as the record specified by the STARTBR for a file opened in VSAM NSR or RLS mode. This can occur because the initial record specified on the STARTBR command can be deleted by another transaction in between the STARTBR completing and a READNEXT or READPREV being issued. In VSAM LSR mode, the initial record cannot be deleted between the STARTBR and the READNEXT.

Options

DEBKEY
(blocked BDAM) specifies that deblocking is to occur by key. If neither DEBREC nor DEBKEY is specified, deblocking does not occur.

DEBREC
(blocked BDAM) specifies that deblocking is to occur by relative record (relative to zero). If neither DEBREC nor DEBKEY is specified, deblocking does not occur.

EQUAL
(VSAM and data table) specifies that the search is satisfied only by a record having the same key (complete or generic) as that specified in the RIDFLD option.

This option is the default field for a direct ESDS browse.

FILE(filename)
specifies the name of the file to be accessed.

If SYSID is specified, the data set to which this file refers is assumed to be on a remote system irrespective of whether the name is defined in the FCT. Otherwise, the FCT entry is used to find out whether the data set is on a local or a remote system.
GENERIC
(VSAM KSDS, path or data table) specifies that the search key is a generic key whose length is specified in the KEYLENGTH option. The search for a record is satisfied when a record is found that has the same starting characters (generic key) as those specified.

GTEQ
(VSAM or data table) specifies that, if the search for a record having the same key (complete or generic) as that specified in the RIDFLD option is unsuccessful, the first record having a greater key satisfies the search.

This option is the default for directly browsing through a KSDS or an RRDS. It is not valid for directly browsing an ESDS, although it is valid for browsing through an ESDS using a path.

KEYLENGTH(data-value)
specifies the length (halfword binary) of the key that has been specified in the RIDFLD option, except when RBA or RRN is specified, in which case KEYLENGTH is not valid.

This option must be specified if GENERIC is specified, and it can be specified whenever a key is specified. If the length specified is different from the length defined for the data set and the operation is not generic, the INVREQ condition occurs.

The INVREQ condition also occurs if a STARTBR command specifies GENERIC, and the KEYLENGTH is not less than that specified in the VSAM definition.

If KEYLENGTH(0) is used with the object of positioning on the first record in the data set, the GTEQ option must also be specified. If EQUAL is specified either explicitly or by default with KEYLENGTH(0), the results of the STARTBR is unpredictable.

RBA
(VSAM KSDS or ESDS base data sets, or CICS-maintained data tables only, not paths) specifies that the record identification field specified in the RIDFLD option contains a relative byte address. Use this option only when browsing an ESDS base, or a KSDS base when using relative byte addresses instead of keys to identify the records.

You cannot use RBA for:

- User-maintained data tables
- Coupling facility data tables
- Any KSDS files opened in RLS access mode
- KSDS files that hold more than 4GB

REQID(data-value)
specifies as a halfword binary value a unique request identifier for a browse, used to control multiple browse operations on the same or different data sets. If this option is not specified, a default value of zero is assumed.

RIDFLD(data-area)
specifies the record identification field. The contents can be a key, a relative byte address, or relative record number (for VSAM data sets), or a block reference, physical key, and deblocking argument (for BDAM data sets). For a relative byte address or a relative record number, the format of this field must be fullword binary. For a relative byte address, the RIDFLD can be greater than or equal to zero. For a relative record number, the RIDFLD can be greater than or equal to 1.

For VSAM, a full record id of X’FF’s indicates that the browse is to be positioned at the end of the data set in preparation for a backwards browse using READPREV commands.

RRN
(VSAM RRDS) specifies that the record identification field specified in the RIDFLD option contains a relative record number. This option should only be used with files referencing relative record data sets.

SYSID(systemname)
specifies the name of the system to which the request is directed.

If you specify SYSID, and omit both RBA and RRN, you must also specify KEYLENGTH.

Conditions

Note: RESP2 values are not set for files that are on remote systems.

DISABLED
RESP2 values:

50 A file is disabled. A file may be disabled because:
- It was initially defined as disabled and has not since been enabled.
- It has been disabled by a SET FILE or a CEMT SET FILE command.

Default action: terminate the task abnormally.

FILENOTFOUND
RESP2 values:

1 A file name referred to in the FILE option cannot be found in the FCT and SYSID has not been specified.

Default action: terminate the task abnormally.

ILLOGIC
RESP2 values: (VSAM)

110 A VSAM error occurs that does not fall within one of the other CICS response categories.

(See EIBRCODE in the EXEC interface block; refer to Appendix A, “EXEC interface block” on page 387 for details.)
STARTBR

Default action: terminate the task abnormally.

INVREQ

RESP2 values:

20 Browse operations are not allowed according to the file entry specification in the FCT.

25 The KEYLENGTH and GENERIC options are specified, and the length defined for the data set to which this file specified in the KEYLENGTH option is greater than or equal to the length of a full key.

26 The KEYLENGTH option is specified (but the GENERIC option is not specified), and the specified length does not equal the length defined for the data set to which this file refers.

33 An attempt is made to start a browse with a REQID already in use for another browse.

42 The KEYLENGTH and GENERIC options are specified, and the length specified in the KEYLENGTH option is less than zero.

44 The specified file is a user-maintained or coupling facility data table and the command does not conform to the format of STARTBR for such a data table (for example, RBA is specified).

51 A STARTBR command to a KSDS file that is being accessed in RLS mode specifies the RBA keyword. RLS mode does not support RBA access to KSDS files.

Default action: terminate the task abnormally.

IOERR

RESP2 values:

120 There is an I/O error during the file control operation. An I/O error is any unusual event that is not covered by a CICS condition.

For VSAM files, IOERR normally indicates a hardware error. Further information is available in the EXEC.interface block; refer to Appendix A, “EXEC interface block” on page 387 for details.

For a coupling facility data table, an IOERR indicates a bad response returned from a coupling facility access.

Default action: terminate the task abnormally.

ISCINVREQ

RESP2 values:

70 The remote system indicates a failure that does not correspond to a known condition.

Default action: terminate the task abnormally.

LOADING

RESP2 values:

104 The request cannot be satisfied because it is issued against a data table that is still being loaded. The condition can be raised for one of the following reasons:

- The STARTBR specifies a record that has not yet been loaded into a coupling facility data table. Records can be read while a CFDT is loading only if the requested key is within the range of those records already loaded.

The LOADING response can also be returned for a coupling facility data table that has failed during loading. For more information about what happens if the load for a coupling facility data table fails, see the description of the XDTLC global user exit in the CICS Customization Guide.

- The READ specifies the GENERIC or GTEQ options for a user-maintained data table. While a UMT is being loaded, you can issue start browse requests with precise keys only.

If your application programs encounter the LOADING condition persistently or too frequently, check that this is not caused by conflicting file definitions that reference the same data set.

Default action: terminate the task abnormally.

NOTAUTH

RESP2 values:

101 A resource security check has failed on FILE(filename).

Default action: terminate the task abnormally.

NOTFND

RESP2 values:

80 An attempt to position on a record based on the search argument provided is unsuccessful.

NOTFND can also occur if a generic STARTBR with KEYLENGTH(0) specifies the EQUAL option.

Default action: terminate the task abnormally.

NOTOPEN

RESP2 values:

60 NOTOPEN (RESP2 60) is returned for one of the following reasons:

- The requested file is CLOSED and UNENABLED. The CLOSED, UNENABLED state is reached after a CLOSE request has been received against an OPEN ENABLED file and the file is no longer in use. You can also make CLOSED, UNENABLED the initial state, by specifying STATUS(UNENABLED) and OPENTIME(FIRSTREF) on the FILE resource definition. (For BDAM files, you use
The requested file is OPEN and in use by other transactions, but a CLOSE request against the file has been received.

- A STARTBR command is issued against a data set that is quiesced, or is being quiesced, as a result of a SET DSNAME QUIESCED or IMMQUIESCED command.

This condition does not occur if the request is made either to a CLOSED, ENABLED file or to a CLOSED, DISABLED file. In the first case, the file is opened as part of executing the request. In the second case, the DISABLED condition occurs.

Default action: terminate the task abnormally.

SYSIDERR

RESP2 values:

130 The SYSID option specifies a name that is neither the local CICS region nor a remote system defined by a CONNECTION definition. SYSIDERR also occurs when the link to the remote system is closed.

131 For a coupling facility data table, the connection to the coupling facility data table server has failed. This could be because the server itself has failed, or the server is available, but CICS has failed to connect to it.

132 The start browse is operating on a coupling facility data table that no longer exists, probably because of a coupling facility failure, in which case the coupling facility data table server also fails. See the CICS System Definition Guide for information about restarting a coupling facility data table server and reloading a table.

Default action: terminate the task abnormally.
SUSPEND

SUSPEND

Suspend a task.

Description

SUSPEND relinquishes control to a task of higher or equal dispatching priority. Control is returned to the task issuing the command as soon as no other task of a higher or equal priority is ready to be processed.
SYNCPOINT

Establish a syncpoint.

| Conditions: INVREQ, ROLLEDBACK |

Description

SYNCPOINT divides a task (usually a long-running one) into smaller units of work. It specifies that all changes to recoverable resources made by the task since its last syncpoint are to be committed.

Note: A failure occurring during the commit phase (phase 2) of syncpoint processing does not return an error condition and the transaction is not abnormally terminated. Subsequent units of work in the transaction are allowed to continue normally. See the *CICS Recovery and Restart Guide* for further information.

Conditions

INVREQ

RESP2 values:

- **200** SYNCPOINT was in a program that is linked to from a remote system that has not specified the SYNONRETURN option, or if it has been linked to locally and is defined with EXECUTIONSET=DPLSUBSET.

 Default action: terminate the task abnormally.

ROLLEDBACK

occurs when a SYNCPOINT command is driven into rollback by a remote system that is unable to commit the syncpoint. All changes made to recoverable resources in the current unit of work are backed out.

Default action: terminate the task abnormally.
SYNCPOINT ROLLBACK

Back out to last syncpoint.

Options

ROLLBACK

specifies that all changes to recoverable resources made by the task since its last syncpoint are to be backed out.

This option can be used, for example, to tidy up in a HANDLE ABEND routine, or to revoke database changes after the application program finds irrecoverable errors in its input data.

If the unit of work updates remote recoverable resources using an MRO or APPC session, the ROLLBACK option is propagated to the back-end transaction.

When a distributed transaction processing conversation is in use, the remote application program has the EIB fields EIBSYNRB, EIBERR, and EIBERRCD set. For the conversation to continue, the remote application program should execute a SYNCPOINT ROLLBACK command.

When the mirror transaction is involved in the unit of work using an MRO or APPC session, the mirror honors the rollback request, revokes changes, and then terminates normally.

This option is not supported across LUTYPE6.1 VTAM sessions to the mirror or back-end transactions. In these cases, the front-end transactions could be abended to cause the back-end transactions to back out.

Note: A failure occurring during the backout phase (phase 2) of syncpoint processing does not return an error condition and the transaction is not abnormally terminated. Subsequent units of work in the transaction are allowed to continue normally. See CICS Recovery and Restart Guide for further information.

Conditions

INVREQ

RESP2 values:

200 SYNCPOINT ROLLBACK was in a program that is linked to from a remote system that has not specified the SYNCONRETURN option, or if it has been linked to locally and is defined with EXECUTIONSET=DPLSUBSET

Default action: terminate the task abnormally.
UNLOCK

Release exclusive control.

Description

UNLOCK releases the exclusive control established in response to a read command with the UPDATE option. You use it if you retrieve a record for update, and then decide that you do not want to update the record after all. However, for a recoverable file (other than one that refers to a coupling facility data table), the resource remains locked until either a syncpoint command is executed or the task is terminated. The record can be in a data set, or in a CICS or user-maintained data table, on a local or a remote system.

If the UNLOCK command refers to a record in a recoverable coupling facility data table the record lock is released immediately provided that the task has not made any previous change to the same record (or added it as a new record) within the current unit of work. If changes have been made to the record, or it is a new record added to the table, it remains locked until either a syncpoint command is executed or the task is terminated.

If an UNLOCK command does not have a token, an attempt is made to match it to either a read with the UPDATE option that also does not have a token, or to a WRITE MASSINSERT. If neither of these is found, no action is taken and a NORMAL response is returned.

Use this command to terminate a VSAM WRITE MASSINSERT operation against a VSAM file.

Releasing locks when updating in browse: The UNLOCK command does not release locks held against records locked in response to READNEXT or READPREV commands that specify the update option. It only invalidates the TOKEN value so that it cannot be used to complete an update.

Options

FILE(filename)

specifies the name of the file to be released.

If SYSID is specified, the data set to which this file refers is assumed to be on a remote system irrespective of whether the name is defined in the FCT. Otherwise, the FCT entry is used to find out whether the data set is on a local or a remote system.

SYSID(systemname)

specifies the name of the system to which the request is directed.

TOKEN(data-area)

specifies as a fullword binary value a unique request identifier for an UNLOCK, used to associate it with a previous READ, READNEXT, or READPREV command that specified the UPDATE option.

If you specify UNLOCK with the TOKEN returned on a READNEXT UPDATE or READPREV UPDATE command for a file accessed in RLS mode, the unlock command simply invalidates the TOKEN value so that it cannot be used to complete an update. It does not release the record lock.

TOKEN can be function shipped. However, if a request specifying TOKEN is function shipped to CICS region that does not support this keyword, the request fails.

Conditions

Note: RESP2 values are not set for files that are on remote systems.

DISABLED

RESP2 values:

50 A file is disabled because it was initially defined as disabled and has not since been enabled.

A file is disabled by an EXEC CICS SET FILE or a CEMT SET FILE command.

This condition cannot occur when the UNLOCK follows a successful read for update or a VSAM WRITE MASSINSERT.

Default action: terminate the task abnormally.

FILENAMEFOUND

RESP2 values:

1 A file name referred to in the FILE option cannot be found in the FCT and SYSID has not been specified.

Default action: terminate the task abnormally.
UNLOCK

ILLOGIC
RESP2 values: (VSAM and CICS-maintained data tables)

110 A VSAM error occurs that does not fall within one of the other CICS response categories.
(See EIBRCODE in the EXEC interface block; refer to Appendix A, “EXEC interface block” on page 387 for details.)

Default action: terminate the task abnormally.

INVREQ
RESP2 values:

47 An unlock includes a token whose value cannot be matched against any token in use for an existing READ with the UPDATE option.

48 An attempt is made to function-ship a request which includes a TOKEN keyword.

Default action: terminate the task abnormally.

IOERR
RESP2 values:

120 There is an I/O error during the file control operation. An I/O error is any unusual event that is not covered by a CICS condition.

For VSAM files, IOERR normally indicates a hardware error. Further information is available in the EXEC interface block; refer to Appendix A, “EXEC interface block” on page 387 for details.)

For a coupling facility data table, an IOERR indicates a bad response returned from a coupling facility access.

Default action: terminate the task abnormally.

ISCINVREQ
RESP2 values:

70 The remote system indicates a failure that does not correspond to a known condition.

Default action: terminate the task abnormally.

NOTAUTH
RESP2 values:

101 A resource security check has failed on FILE(filename).

Default action: terminate the task abnormally.

NOTOPEN
RESP2 values:

60 NOTOPEN (RESP2 60) is returned for one of the following reasons:

- The requested file is CLOSED and UNENABLED. The CLOSED, UNENABLED state is reached after a CLOSE request has been received against an OPEN ENABLED file and the file is no longer in use. You can also make CLOSED, UNENABLED the initial state, by specifying STATUS(UNENABLED) and OPENTIME(FIRSTREF) on the FILE resource definition. (For BDAM files, you use the FILSTAT parameter of the DFHFCT TYPE=FILE macro.)

- The requested file is OPEN and in use by other transactions, but a CLOSE request against the file has been received.

- An UNLOCK command is issued against a data set that is quiesced, or is being quiesced, as a result of a SET DSNAME QUIESCED or IMMQUIESCED command.

This condition does not occur if the request is made to either a CLOSED, ENABLED file or a CLOSED, DISABLED file. In the first case, the file is opened as part of executing the request. In the second case, the DISABLED condition occurs.

It also cannot occur when the UNLOCK follows a successful READ for update or a WRITE MASSINSERT operation.

Default action: terminate the task abnormally.

SYSIDERR
RESP2 values:

130 The SYSID option specifies a name that is neither the local CICS region nor a remote system defined to CICS by a CONNECTION definition. SYSIDERR also occurs when the link to the remote system is closed.

131 For a coupling facility data table, the connection to the coupling facility data table server has failed. This could be because the server itself has failed, or the server is available, but CICS has failed to connect to it.

132 The UNLOCK is issued against a coupling facility data table that no longer exists, probably because of a coupling facility failure, in which case the coupling facility data table server also fails. See the CICS System Definition Guide for information about restarting a coupling facility data table server and reloading a table.

Default action: terminate the task abnormally.
UPDATE COUNTER

Update the current value.

\[
\text{UPDATE COUNTER(name) \text{-POOL(name) VALUE(data-value) COMPAREMIN(data-value) COMPAREMAX(data-value)}}
\]

Conditions: INVREQ, SUPPRESSED

Description

These counter commands set a new current value for the named counter. COUNTER operates on fullword signed counters and DCOUNTER on doubleword unsigned counters.

You can use the COMPAREMAX and COMPAREMIN options to set a new current value only if it falls within a specified range, or is above or below a specified value.

For information about specifying fullword and doubleword variables on these named counter commands, see "Argument values" on page 2.

Options

COMPAREMAX(data-value) specifies, as a fullword signed binary value (doubleword unsigned binary value for DCOUNTER), a value to be compared with the named counter's current value, and makes the result of the UPDATE command conditional on the comparison:

- If the current value to be assigned is less than, or equal to, the value specified on the COMPAREMAX parameter, the current value is reset, with response normal.
- If the current value is greater than the specified value, CICS returns an exception condition.

Note: The value you specify on the COMPAREMIN parameter can be greater than the value on the COMPAREMAX parameter. See the COMPAREMAX parameter for the effect of this.

COMPAREMIN(data-value) specifies, as a fullword signed binary value (doubleword unsigned binary value for DCOUNTER), a value to be compared with the named counter's current value, and makes the result of the UPDATE command conditional on the comparison:

- If the current value to be assigned is equal to, or greater than, the value specified on the COMPAREMIN parameter, the CICS resets the current value, with response normal.
- If the current value is less than the specified value, CICS returns an exception condition.

COUNTER(name) specifies the name of the named counter for which the current number is to be reset to the value specified on the value parameter. The name can be up to 16 alphanumeric characters. If name is a variable that contains a name that is less than 16 characters, the name must be padded with trailing blanks.

DCOUNTER(name) specifies the name of the named counter that is to be reset to its minimum value. The name can be up to 16 alphanumeric characters. If name is a variable that contains a name that is less than 16 characters, the name must be padded with trailing blanks.
UPDATE COUNTER

POOL(poolname)

specifies the name of the pool in which the named counter resides.

Valid characters for the pool selector string are A through Z, 0 through 9, $ @ # _ (underscore). If name is a variable that contains a name that is less than 8 characters, the name must be padded with trailing blanks.

This parameter is optional. If you omit the name of the pool, a pool selector value of 8 blanks is assumed.

If there is no matching entry in the DFHNCOPT options table, CICS uses the name specified on the NCPLDFT system initialization parameter, which specifies the default named counter pool.

For information about generating a named counter options table using the DFHNCO macro, see the *CICS System Definition Guide*.

VALUE(data-value)

specifies the new number to be set as the current value for the named counter, using a fullword signed binary value for COUNTER and a doubleword unsigned value for DCOUNTER.

Conditions

INVREQ

RESP2 values:

- **201** Named counter not found.
- **301** The server has reported an error code that is not understood by the named counter interface. Generally, this is not possible unless the interface load module, DFHNCIF, is at a lower maintenance or release level than the server itself.
- **303** An unexpected error, such as structure failure or loss of connectivity, has occurred on a macro used to access the coupling facility. Further information can be found in message DFHNC0441 in the CICS job log.
- **304** The pool selection parameter specified in the program cannot be resolved to a valid server name using the current options table.
- **305** The interface is unable to establish a connection to the server for the selected named counter pool. Further information can be found in an AXM services message (AXMSCnnnn) in the CICS job log.
- **306** An abend occurred during server processing of a request. Further information can be found in a message in the CICS job log and the server job log.
- **308** The DFHNCOPT options table module, required for resolving a pool name, could not be loaded.

- **309** During processing of the options table, the named counter interface encountered an unknown entry format. Either the options table is not correctly generated, or the DFHNCIF interface load module is not at the same release level as the options table.
- **310** An options table entry matching the given pool name specified a user exit program, but the user exit program is not link-edited with the options table and cannot be loaded.
- **403** The POOL parameter contains invalid characters or embedded spaces.
- **404** The COUNTER parameter contains invalid characters or embedded spaces.
- **406** The VALUE parameter is invalid. You cannot set the current value to less than the minimum value, or greater than the maximum value plus 1.

Default action: terminate the task abnormally.

SUPPRESSED

RESP2 values:

- **103** The current value of the named counter is:
 - not within the range specified by the COMPAREMAX and COMPAREMIN parameters, when both are specified
 - greater than the COMPAREMAX parameter or less than the COMPAREMIN parameter, when only one option is specified.

Default action: terminate the task abnormally.
VERIFY PASSWORD

Allow an application to check that a password matches the password recorded by an external security manager.

Description

The VERIFY PASSWORD command allows an application to check that a password matches the password recorded by an external security manager (ESM) for a userid, and return values recorded by the external security manager for the password.

Unlike the SIGNON command, VERIFY PASSWORD does not depend upon the principal facility, so it can be issued when the facility is an APPC session.

When the external security manager is RACF, the CHANGETIME and EXPIRYTIME outputs always show as midnight.

If a VERIFY PASSWORD request is successful, you should not infer that a signon would also be successful. For example, the USERID may be revoked in one or more RACF group connections, or may not be able to signon in this CICS region.

Attention: You should clear the password fields on the EXEC CICS commands that have a password option as soon as possible after use. This is to ensure that passwords are not revealed in system or transaction dumps.

Options

CHANGETIME(data-area)
returns the date and time the password was last changed, in ABSTIME units.

When the external security manager is RACF, the time is shown as midnight.

DAYSLEFT(data-area)
returns the number of days from now, in a halfword binary field, until the password expires. If the password is non-expiring, -1 is returned.

ESMREASON(data-area)
returns the reason code, in a fullword binary field, that CICS receives from the external security manager. If the ESM is RACF, this field is the RACF reason code.

ESMRESP(data-area)
returns the response code, in a fullword binary field, that CICS receives from the external security manager. If the external security manager is RACF, this field is the RACF return code.

EXPIRYTIME(data-area)
returns the date and time the password will expire, in ABSTIME units. When the external security manager is RACF, the time is shown as midnight.

INVALIDCOUNT(data-area)
returns the number of times an invalid password was entered for this user.

LASTUSETIME(data-area)
returns the date and time this userid was last accessed, in ABSTIME units.

PASSWORD(data-value)
specifies the password, 8 characters, that you want the external security manager to check for the specified userid. The other data is not returned if the password is not valid.

USERID(data-value)
specifies the userid, 8 characters, of the user whose password is to be checked.

Note: In the CHANGETIME, LASTUSETIME, and EXPIRYTIME options, the time value returned is in the same format as the ASKTIME command, so it can be reformatted as a date and time, in a format specified by the caller, by using the FORMATTIME command.

If a user has a never-expiring password that was established with the RACF PASSWORD USER(userid) NOINTERVAL
VERIFY PASSWORD

command, the outputs DAYSLEFT and EXPIRYTIME have little meaning and are shown as −1.

Conditions

INVREQ
RESP2 values:

13 There is an unknown return code in ESMRESP from the external security manager.
18 The CICS external security manager interface is not initialized.
29 The external security manager is not responding.
32 The userid field contains a blank character in an invalid position.

Default action: terminate the task abnormally.

NOTAUTH
RESP2 values:

2 The supplied password is wrong. If the external security manager is RACF, the revoke count maintained by RACF is incremented.
3 A new password is required.
19 The USERID is revoked.

Default action: terminate the task abnormally.

USERIDERR
RESP2 values:

8 The USERID is not known to the external security manager.

Default action: terminate the task abnormally.
WAIT CONVID (APPC)

Ensure accumulated data is transmitted on an APPC mapped conversation.

WAIT CONVID(name) ───┬ ┬ ───STATE(cvda) ──

Conditions: INVREQ, NOTALLOC

Description

WAIT CONVID allows an application program to ensure that any accumulated application data and control indicators from a SEND command, or the results of a CONNECT PROCESS command, are transmitted to the partner transaction.

Options

CONVID(name)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

STATE(cvda)

gets the state of the current conversation. The cvda values returned by CICS are:

ALLOCFREE
CONFFREE
CONFRECEIVE
CONFSEND
FREE
PENDFREE
PENDRECEIVE
RECEIVE
ROLLBACK
SEND
SYNCFREE
SYNCRECEIVE
SYNCSEND

Conditions

INVREQ

RESP2 values:

200 Command not supported for distributed program link when it refers to the principal facility.

also occurs (RESP2 not set) in any of the following situations:

• The command is used on a conversation that is not using the EXEC CICS interface or that is not a mapped conversation.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the CONVID value in the command does not relate to a conversation that is owned by the application.

Default action: terminate the task abnormally.
WAIT EVENT

Wait for an event to occur.

WAIT EVENT

ECADDR(ptr-value)

NAME(name)

Condition: INVREQ

Note for dynamic transaction routing

Using this command could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the CICS Application Programming Guide for more information about transaction affinities.

Description

WAIT EVENT synchronizes a task with the completion of an event initiated by the same task or by another task. The event would normally be the posting, at the expiration time, of a timer-event control area provided in response to a POST command, as described in “POST” on page 196. The WAIT EVENT command provides a method of directly relinquishing control to some other task until the event being waited on is completed.

CICS includes the addresses of all ECBs passed by WAIT EVENT commands of current tasks in the ECBLIST passed by CICS to the ESA WAIT ESA POST ESA WAIT

Options

ECADDR(ptr-value)

specifies the address of the timer-event control area that must be posted before task activity can be resumed.

NAME(name)

specifies the symbolic name, 1–8 alphanumeric characters, that is returned in SUSPENDVALUE or HVALUE, when a task issues WAIT EVENT and is the subject of an INQUIRE TASK command or a CEMT INQ TASK.

Conditions

INVREQ

RESP2 values:

2 The ECB address is a null pointer, (X'00000000') or (X'FF000000').

3 The specified event control area address is above the 16MB line for programs executing in 24-bit mode.

4 The event control area address is not aligned on a fullword boundary.

Examples

The following example shows you how to suspend the processing of a task until the specified event control area is posted:

EXEC CICS WAIT EVENT ECADDR(PVALUE)
WAIT EXTERNAL

Synchronize events.

WAIT EXTERNAL—ECBLIST(ptr-value)—NUMEVENTS(data-value)

Condition: INVREQ

Note for dynamic transaction routing

Using this command could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the CICS Application Programming Guide for more information about transaction affinities.

Description

WAIT EXTERNAL waits for events that post MVS-format ECBs. The command causes the issuing task to be suspended until one of the ECBs has been posted, that is until one of the events has occurred. The task can wait on one or more ECBs. If it waits on more than one, it is dispatchable as soon as one of the ECBs is posted. You must ensure that each ECB is cleared (set to binary zeros) no later than the earliest time it could be posted. CICS cannot do this for you. If you wait on an ECB that has been previously posted and not subsequently cleared, your task is not suspended and continues to run as though the WAIT EXTERNAL had not been issued.

CICS uses extended ECBs and the MVS POST exit mechanism for ECBs passed by WAIT EXTERNAL; therefore do not use WAIT EXTERNAL unless you are sure that the ECBs are not posted by any method other than the MVS POST service or the standard ‘optimized post’ logic using a compare-and-swap (CS) instruction. Note that the standard ‘optimized post’ logic is only applicable when the ECB is not waiting, that is when the wait bit X'80' is not on.

If a WAIT EXTERNAL ECB is hand posted, for example by another task moving a value into the ECB, unpredictable errors occur. If there is any possibility of hand posting, use the WAITCICS command. Use WAIT EXTERNAL whenever possible, because it usually has less overhead.

A given ECB must not be waited on by more than one task at the same time. If this rule is not followed, the second task to wait on the ECB gets an INVREQ condition.

Options

ECBLIST(ptr-value)

is a pointer to a list of addresses of MVS-format ECBs representing events. Both the ECBLIST and the ECBs can be above the 16MB line, that is they can be 31-bit addresses. Each ECB must be fullword aligned. Null (X'00000000' and X'FF000000') ECB addresses are ignored.

NAME(name)

specifies the symbolic name, 1–8 alphanumeric characters, that is returned in SUSPENDVALUE or HVALUE, when a task issues WAIT EXTERNAL and is the subject of an INQ TASK command or a CEMT INQ TASK.

NUMEVENTS(data-value)

is the number of such events, corresponding to the number of addresses in the ECBLIST. The field is fullword binary. When NUMEVENTS is specified as 1, ECBLIST must still be an address that points to a list containing just one ECB address.

PURGEABILITY(cvda)

determines the outcome of:

- An attempt to perform a deadlock time-out
- A SET TASK PURGE|FORCEPURGE command
- A CEMT SET TASK PURGE|FORCEPURGE

on the issuing task while it is waiting. The values passed to CICS are PURGEABLE (the default value), or NOTPURGEABLE. The outcome is:

<table>
<thead>
<tr>
<th>Function</th>
<th>PURGEABLE</th>
<th>NOTPURGEABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTIMOUT expired</td>
<td>Abend AEXY</td>
<td>No effect</td>
</tr>
<tr>
<td>CEMT SET TASK PURGE</td>
<td>Abend AEXY</td>
<td>No effect</td>
</tr>
<tr>
<td>EXEC CICS SET TASK PURGE</td>
<td>Abend AEXY</td>
<td>No effect</td>
</tr>
<tr>
<td>CEMT SET TASK FORCEPURGE</td>
<td>Abend AEXY</td>
<td>Abend AEXY</td>
</tr>
<tr>
<td>EXEC CICS SET TASK FORCEPURGE</td>
<td>Abend AEXY</td>
<td>Abend AEXY</td>
</tr>
</tbody>
</table>
WAIT EXTERNAL

See the CICS Recovery and Restart Guide for information about DTIMOUT and SET TASK PURGE|FORCEPURGE.

Conditions

INVREQ

RESP2 values: CVDA values are:

1. An ECB is not valid, for example the ECB is not fullword aligned.
2. The ECB address is a null pointer, (X'00000000') or (X'FF000000').
3. NUMEVENTS is not a positive number.
4. PURGEABILITY is specified with an incorrect CVDA.
5. No valid ECBs have been found in the list, because either the ECBLIST address is not valid or all the ECB addresses are not valid.
6. The event control blocks (ECBs) specified are in user-key task-lifetime storage, and are inaccessible to another transaction that is expected to post the ECBs.

The ECBs specified are in read-only storage.

Default action: terminate the task abnormally.

Examples

The following figure shows how to use the ECBLIST parameter to point to a list of ECB addresses that in turn point to individual ECBs. Note that the ECBLIST variable is a pointer pointing to the first address of the list.

![Diagram showing ECB pointers and DCL examples](diagram.png)

Figure 5. ECBLIST option, EXEC CICS WAIT EXTERNAL
WAIT JOURNALNAME

Synchronize the task with journal output being written to a system logger log stream.

```
MOVE WAIT JOURNALNAME(data-value) REqid(data-value)
```

Conditions: INVREQ, IOERR, JIDERR, NOTOPEN

Description

WAIT JOURNALNAME synchronizes the task with the output of one or more journal records that have been created but whose output has been deferred; that is, with asynchronous journal output requests.

The journal records may already be written out from the journal buffer area to the corresponding system logger log stream, or the system logger output operation may be in progress. If the log stream output operation has already been completed, control returns immediately to the requesting task; if not, the requesting task waits until the operation has been completed.

Issuing the WAIT command has the effect of initiating the output operation, and therefore any WAIT is of short duration.

If the requesting program has made a succession of successful asynchronous output requests to the same journal, it is necessary to synchronize on only the last of these requests to ensure that all of the journal records have been output to the system logger log stream. This may be done either by issuing a stand-alone WAIT JOURNALNAME command, or by making the last output command itself synchronous (by specifying the WAIT option in the WRITE JOURNALNAME command).

Options

JOURNALNAME(data-value)

specifies a 1– to 8– character journal name identifying the journal on which the task is to wait for synchronization. The name must be a journal name known to CICS.

To issue the wait against the CICS system log, specify DFHLOG as the journal name.

To issue the wait against journals defined using the journal numbering convention, as in file resource definitions, specify the name as DFHJnn, where nn is the journal number in the range 1 to 99.

Note: Specifying DFHJ01 on this command refers to a user journal, not the system log.

REQID(data-value)

specifies, in a fullword binary variable, the token that refers to a journal record that has been created but possibly not yet written out. The token is returned by CICS from a previous WRITE JOURNALNAME command issued by this task.

If you do not specify REQID, the task is synchronized with the output of the current buffer for the journal specified by JOURNALNAME.

Conditions

INVREQ

the task has not yet issued any write request to any journal, and therefore the WAIT is invalid.

Default action: The task is terminated abnormally with an AEIP abend.

IOERR

a journal record was not output because of an irrecoverable error condition returned by the system logger or by SMF.

Default action: If the log is the system log, CICS either quiesces or abends. If it is a general log, the task is terminated abnormally.

JIDERR

occurs in either of the following situations:

- The specified journal name is not known in the CICS region.
- The specified journal name refers to a DASD-only log stream to which a CICS region in another MVS image is currently connected.

Default action: terminate the task abnormally.

NOTOPEN

occurs in any of the following situations:

- The command cannot be satisfied because the user explicitly disabled the specified journal.
- A wait request is issued against a journal that has not previously been written to.
WAIT JOURNALNAME

- This journal was defined using a model that maps it into the logstream used by the system log for this system. This error is not detected when trying to connect to the logstream. A definition for the journal will be installed and set to failed.

Default action: terminate the task abnormally.

Examples

The following example shows how to request synchronization with the output of journal records written to a user journal named 'ACCOUNTS'

```cics
EXEC CICS WAIT JOURNALNAME('ACCOUNTS')
    REQID(RECTOKEN)
```
WAIT JOURNALNUM

Synchronize with journal output.

Note: This command is supported for compatibility with earlier releases of CICS. It is superseded by the WAIT JOURNALNAME command, which you are recommended to use instead.

The syntax is the same as for WAIT JOURNALNAME except that JOURNALNUM specifies a numeric instead of a character value. The numeric value, nn, is in the range 01–99 and corresponds to journal name **DFHJnn**.
WAIT SIGNAL

Suspend task on a logical unit.

|WAIT SIGNAL

Conditions: NOTALLOC, SIGNAL, TERMERR

Description

WAIT SIGNAL, for a principal facility only, suspends a task until a SIGNAL condition occurs. Some logical units can interrupt the normal flow of data to the application program by a SIGNAL data-flow control command to CICS, signaling an attention, that in turn causes the SIGNAL condition to occur.

The HANDLE CONDITION SIGNAL command causes a branch to a user routine when an attention is received.

The logical units for which you can code a WAIT SIGNAL command are:

- LUTYPE4
- LUTYPE6.1
- 3600 (3601)
- 3767 interactive
- 3770 batch
- 3790 full-function

Conditions

NOTALLOC
occurs if the principal facility of the task is not a terminal.
Default action: terminate the task abnormally.

SIGNAL
occurs when the data-flow control command has been received from the principal facility.

EIBSIG is always set when an inbound signal is received.
Default action: ignore the condition.

TERMERR
occurs for a terminal-related error.
A CANCEL TASK request by a user node error program (NEP) may cause this condition if the task has an outstanding terminal control request active when the node abnormal condition program (CSNE) handles the session error.
Default action: terminate the task abnormally with abend code ATNI.
WAIT TERMINAL

Ensure terminal operation has completed on an LUTYPE6.1 logical unit.

```
WAIT TERMINAL
  CONVID(name)
  SESSION(name)
```

Conditions: INVREQ, NOTALLOC, SIGNAL

Description

WAIT TERMINAL ensures that terminal operation has completed.

Options

CONVID(*name*)

identifies the conversation to which the command relates. The 4-character name identifies either the token returned by a previously executed ALLOCATE command in EIBRSRCE in the EIB, or the token representing the principal session (returned by a previously executed ASSIGN command).

SESSION(*name*)

specifies the symbolic identifier (1–4 characters) of a session TCTTE. This option specifies the alternate facility to be used. If both this option and CONVID are omitted, the principal facility for the task is used.

Conditions

INVREQ

RESP2 values:

200 A distributed program link server application specified the function-shipping session (its principal facility) on the CONVID option.

Default action: terminate the task abnormally.

NOTALLOC

occurs if the facility specified in the command is not owned by the application.

Default action: terminate the task abnormally.

SIGNAL

occurs when an inbound SIGNAL data-flow control command is received from a logical unit or session. EIBSIG is always set when an inbound signal is received.

Default action: ignore the condition.
WAITCICS

WAITCICS

Synchronize events.

Description

WAITCICS waits for events that post MVS-format ECBs. The command causes the issuing task to be suspended until one of the ECBs has been posted, that is until one of the events has occurred. The task can wait on one or more ECBs. If it waits on more than one, it is dispatchable as soon as one of the ECBs is posted. You must ensure that each ECB is cleared, set to binary zeros, no later than the earliest time it could be posted. CICS cannot do this for you. If you wait on an ECB that has been previously posted and not subsequently cleared, your task is not suspended and continues to run as though the WAITCICS had not been issued.

CICS includes the addresses of all ECBs passed by WAITCICS commands of current tasks in the ECBLIST passed by CICS to the MVS WAIT facility when it runs out of work. Such ECBs can be posted using the MVS POST facility or by hand posting. Hand posting could, for example, be done by moving an appropriate value into the ECB. If hand posting is definitely not going to be used, it is preferable to use WAIT EXTERNAL.

A given ECB may not be waited on by more than one task at the same time. If this rule is not followed and the ECBLIST passed by CICS on the MVS WAIT contains duplicate ECB addresses, MVS abends CICS.

Options

ECBLIST(ptr-value)

is a pointer to a list of addresses of MVS-format ECBs representing events. Both the ECBLIST and the ECBs can be above the 16MB line, that is they can be 31-bit addresses. Each ECB must be fullword aligned. Null (X'00000000' and X'FF000000') ECB addresses are ignored.

PURGEABLE

causes the issuing task to be suspended until one of the ECBs has been posted; that is, until one of the events has occurred. The values passed to CICS are PURGEABLE (the default value), or NOTPURGEABLE.

The field is fullword binary. If while this task is waiting another function attempts to purge it, the result is as follows:

- DTIMOUT expired:
 - Abend AEXY
 - No effect

- CEMT SET TASK PURGE:
 - Abend AEXY
 - No effect

- EXEC CICS SET TASK FORCEPURGE:
 - Abend AEXY
 - Abend AEXY

See the **CICS Recovery and Restart Guide** for information about DTIMOUT and **CICS System Programming Reference** for information about SET TASK PURGE|FORCEPURGE.

Note for dynamic transaction routing

Using this command could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the **CICS Application Programming Guide** for more information about transaction affinities.
Conditions

INVREQ

RESP2 values:

1. An ECB is not valid, for example the ECB is not fullword aligned.
2. NUMEVENTS is not a positive number.
3. PURGEABILITY is specified with an incorrect CVDA.
4. No valid ECBs have been found in the list, because either the ECBLIST address is not valid, or all the ECB addresses are not valid.

5. The event control blocks (ECBs) specified are in user-key task-lifetime storage, and are inaccessible to another transaction that is expected to post the ECBs.

 The ECBs specified are in read-only storage.

 Default action: terminate the task abnormally.

Examples

The following figure shows how to use the ECBLIST parameter to point to a list of ECB addresses that in turn point to individual ECBs. Note that the ECBLIST variable is a pointer pointing to the first address of the list.

![Diagram of ECB addresses](image_url)

```
DCL
  ECB1 FIXED BIN(31), /* actual ecb */
  ECB2 FIXED BIN(31), /* actual ecb */
  ECB3 FIXED BIN(31); /* actual ecb */
DCL /* list of ecb addresses */
  1 ECB_ADDR_LIST,
  2 ECB_ADDR(3) PTR;
DCL /* ptr to each addr list */
  PTR_ECB_ADDR_LIST PTR;
  ECB_ADDR(1) = ADDR(ECB1);
  ECB_ADDR(2) = ADDR(ECB2);
  ECB_ADDR(3) = ADDR(ECB3);
  /* set up pointer */
  PTR_ECB_ADDR_LIST = ADDR(ECB_ADDR_LIST);
  /* PTR_ECB_ADDR_LIST = ADDR(ECB_ADDR(1)); */
  (alternative) */
EXEC CICS WAITCICS
  ECBLIST(PTR_ECB_ADDR_LIST)
  NUMEVENTS(3)
  PURGEABLE
```

Figure 6. ECBLIST option, EXEC CICS WAITCICS
WEB ENDBROWSE HTTPHEADER

WEB ENDBROWSE HTTPHEADER

Signal end of HTTP header browse.

Conditions: INVREQ

Description

WEB ENDBROWSE HTTPHEADER terminates the browse. No information is returned on the ENDBROWSE.

Conditions

INVREQ

occurs for the following conditions. RESP2 values are:

1 The command is being issued in a non-CICS Web interface application.

3 The command is being issued for a non-HTTP request.

4 The command is being issued before a WEB STARTBROWSE command is issued.
WEB EXTRACT

Obtain information about inbound client request.

Options

- **HTTPMETHOD(data-area)**
 - specifies a buffer to contain the HTTP method string on the request line of the inbound message.

- **HTTPVERSION(data-area)**
 - specifies a buffer to contain the HTTP version string on the request line of the inbound message.

- **METHODLENGTH(data-area)**
 - specifies the length of the buffer supplied on the HTTPMETHOD option, and is set to the actual length of the data returned to the application. If the data exceeds the buffer length, a LENGERR condition is raised and the data is truncated. The actual length of the HTTPMETHOD is returned in METHODLENGTH.

- **REQUESTTYPE(cvda)**
 - gets the type of request received. Currently, the request type can be HTTP or NONHTTP.

- **PATH(data-area)**
 - specifies a buffer to contain the PATH specified in the request line of the inbound message.

- **PATHLENGTH(data-area)**
 - specifies the length of the buffer supplied on the PATH option, and is set to the actual length of the data returned to the application. If the data exceeds the buffer length, a LENGERR condition is raised and the data is truncated. The actual length of the PATH is returned in PATHLENGTH.

- **VERSIONLEN(data-area)**
 - specifies the length of the buffer supplied on the HTTPVERSION option, and is set to the actual length of the data returned to the application. If the data exceeds the buffer length, a LENGERR condition is raised and the data is truncated. The actual length of the VERSION is returned in VERSIONLEN.

Conditions

- **INVREQ**
 - occurs for the following conditions. RESP2 values are:
 - 1: The command is being issued in a non-CICS Web interface application.
 - 3: The command is being issued for a non-HTTP request (this is set only if one or more of HTTPMETHOD, HTTPVERSION, or PATH is specified and the request is a non-HTTP request).

- **LENGERR**
 - occurs for the following conditions. RESP2 values are:
 - 1: The length on METHODLENGTH, VERSIONLEN, or PATH is less than or equal to zero.
WEB READ

WEB READ

Extract HTTP header information.

WEB—READ—HTTPHEADER(data-area)—NAMELENGTH(data-value)—VALUE(data-area)—VALUELENGTH(data-area)

Conditions: INVREQ, LENGERR, NOTFND

Description

WEB READ extracts HTTP header information.

Options

HTTPHEADER(data-area)

specifies the name of the HTTP header.

NAMELENGTH(data-value)

specifies the length, as a fullword binary value, of the HTTP header name.

VALUE(data-area)

specifies the buffer to contain the value of the HTTP header being extracted.

VALUELENGTH(data-area)

specifies the length of the buffer supplied on the VALUE option, and is set to the actual length of the data returned to the application. If the data exceeds the buffer length, a LENGERR condition is raised and the data is truncated. The actual length of the VALUE is returned in VALUELENGTH.

Conditions

INVREQ

RESP2 values are:

1 The command is being issued in a non-CICS Web interface application.

3 The command is being issued for a non-HTTP request.

LENGERR

RESP2 values are:

1 The length in VALUELENGTH is less than or equal to zero.

2 The header value has been truncated because the receiving buffer is too small.

NOTFND

RESP2 values are:

1 The header with the given name could not be found.
WEB READNEXT

Retrieve next HTTP header.

Options

HTTPHEADER(data-area)
- specifies the buffer to contain the name of the HTTP header being extracted.

NAMELENGTH(data-area)
- specifies the length of the buffer supplied on the HTTPHEADER option, and is set to the actual length of the data returned to the application. If the data exceeds the buffer length, a LENGERR condition is raised and the data is truncated. The actual length of the HTTPHEADER name is returned in NAMELENGTH.

VALUE(data-area)
- specifies the buffer to contain the value of the HTTP header being extracted.

VALUELENGTH(data-area)
- specifies the length of the buffer supplied on the VALUE option, and is set to the actual length of the data returned to the application. If the data exceeds the buffer length, a LENGERR condition is raised and the data is truncated. The actual length of the VALUE is returned in VALUELENGTH.

Conditions

ENDFILE
- The end of the list of HTTPHEADERS has been reached.

INVREQ
- RESP2 values are:
 - 1: The command is being issued in a non-CICS Web interface application.
 - 3: The command is being issued for a non-HTTP request.
 - 4: The command is being issued before a WEB STARTBROWSE has been issued.

LENGERR
- RESP2 values are:
 - 1: NAMELENGTH or VALUELENGTH is less than or equal to zero.
 - 4: The header name has been truncated during a browse operation because the receiving buffer is too small.
 - 5: The header value has been truncated because the receiving buffer is too small.
WEB RECEIVE

WEB RECEIVE

Receive an HTTP request.

<table>
<thead>
<tr>
<th>WEB RECEIVE</th>
<th>INTO(data-area)</th>
<th>LENGTH(data-area)</th>
<th>MAXLENGTH(data-value)</th>
<th>TYPE(cvda)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SET(ptr-ref)</td>
<td></td>
<td></td>
<td>NOTRUNCATE</td>
</tr>
<tr>
<td></td>
<td>CLNTCODEPAGE(name)</td>
<td>HOSTCODEPAGE(name)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditions: INVREQ, LENGERR

Description
WEB RECEIVE receives the body of an HTTP Request (or all the data received for a non-HTTP Request) from the CICS Web interface or Business Logic Interface into an application-supplied buffer.

Options

CLNTCODEPAGE(name)
specifies the 40-character name of the codepage to be used when data is converted from the client codepage. If this is not specified, data is not converted, and is passed to the application in the form in which it was received over the socket connection. If you specify CLNTCODEPAGE you must also specify HOSTCODEPAGE. Valid values for CLNTCODEPAGE are the CICS-supported CLINTCP and SRVERCP values described in **CICS Family: Communicating from CICS on System/390**. Mapping is performed between the IANA Coded Character Set values used in HTTP requests to the CLINTCP values known to CICS; these values are listed in the **CICS Internet Guide**.

HOSTCODEPAGE(name)
specifies the 8-character name of the host codepage to be used when data is converted from the ASCII codepage in which it was received into the EBCDIC codepage in which CICS will process it. If this is not specified, data is not converted, and is passed to the application in the form in which it was received over the socket connection. If you specify HOSTCODEPAGE you must also specify CLNTCODEPAGE.

INTO(data-area)
specifies the buffer that is to contain the data being received.

LENGTH(data-area)
specifies a fullword binary data area which will be set to the length of the data received.

MAXLENGTH(data-value)
specifies the maximum amount, as a fullword binary value, of data that CICS is to recover, if INTO is specified.

If the length of data exceeds the value specified and the NOTRUNCATE option is not present, the data is truncated to that value and the LENGERR condition occurs. The data area specified in the LENGTH option is set to the original length of data.

If the length of data exceeds the value specified and the NOTRUNCATE option is present, CICS retains the remaining data and uses it to satisfy subsequent RECEIVE commands. The data area specified in the LENGTH option is set to the length of data returned.

NOTRUNCATE
specifies that when the data available exceeds the length requested, the remaining data is not to be discarded but is to be retained for retrieval by subsequent RECEIVE commands.

SET(ptr-ref)
specifies a pointer reference that is to be set to the address of data received. The pointer reference is valid until the next receive command or the end of task.

TYPE(cvda)
returns a value of HTTP or NONHTTP to identify whether the data received is an HTTP or non-HTTP message.

Conditions

INVREQ
RESP2 values:

1 the command is issued in a non-CICS Web interface application.

LENGERR
occurs if data is discarded by CICS because its length exceeds the maximum the program accepts. RESP2 values:

1 The length is negative.
The length is positive and exceeds the program's maximum.
WEB RETRIEVE

| WEB RETRIEVE

| Retrieve a document.

WEB RETRIEVE

| WEB RETRIEVE

| Retrieve a document.

| WEB RETRIEVE
WEB SEND

Select a document for delivery.

<table>
<thead>
<tr>
<th>WEB SEND</th>
<th>DOCTOKEN(name)</th>
<th>CLNTCODEPAGE(name)</th>
<th>STATUSCODE(data-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STATUSTEXT(data-area)</td>
<td>LENGTH(data-value)</td>
<td></td>
</tr>
</tbody>
</table>

Conditions: INVREQ, NOTFND

Description

WEB SEND selects a document for delivery by the CICS Web Interface or the Business Logic Interface.

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLNTCODEPAGE(name)</td>
<td>specifies the 40-character name of the ASCII codepage in which the data is to be delivered to the browser. If this is not specified, data is not converted, and is sent to the browser in the form in which the application supplied it. Valid values for CLNTCODEPAGE are the CICS-supported CLINTCP and SRVERCP values described in CICS Family: Communicating from CICS on System/390. Mapping is performed between the IANA Coded Character Set values used in HTTP requests and the CLINTCP values known to CICS; these values are listed in the CICS Internet Guide.</td>
</tr>
<tr>
<td>DOCTOKEN(name)</td>
<td>specifies the 16-byte symbolic name of the document to be sent.</td>
</tr>
<tr>
<td>LENGTH(data-value)</td>
<td>specifies the length, as a fullword binary value, of the string supplied on the STATUSTEXT option.</td>
</tr>
<tr>
<td>STATUSCODE(data-value)</td>
<td>is a binary halfword value to be inserted on the status line. The code is intended to be a HTTP status code and should conform to the rules for HTTP status codes. However, CICS does not validate the code and it is the application’s responsibility to ensure that the value is valid.</td>
</tr>
<tr>
<td>STATUSTEXT(data-area)</td>
<td>specifies a data-area containing text describing the value of the status code. The status text is intended to be a human-readable value for the status code.</td>
</tr>
</tbody>
</table>

Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVREQ</td>
<td>occurs for the following conditions. RESP2 values are: 1 The command is being issued in a non-CICS Web interface application.</td>
</tr>
<tr>
<td>NOTFND</td>
<td>occurs for the following conditions. RESP2 values are: 1 The document has not been created or the name is incorrectly specified. 7 The specified CLNTCODEPAGE is not recognised or is incorrectly specified.</td>
</tr>
</tbody>
</table>

Chapter 1. CICS API commands 367
WEB STARTBROWSE

WEB STARTBROWSE

Signal start of HTTP header browse.

WEB─STARTBROWSE─HTTPHEADER

Conditions: INVREQ

Description

WEB STARTBROWSE signals the start of a browse of the HTTP header information.

Conditions

INVREQ

occurs for the following conditions. RESP2 values are:

1 The command is being issued in a non-CICS Web interface application.
3 The command is being issued for a non-HTTP request.
WEB WRITE

Build HTTP header information.

WEB WRITE—HTTPHEADER(data-area)—NAMELENGTH(data-value)—VALUE(data-area)—VALUELENGTH(data-value)

Conditions: INVREQ

Description

WEB WRITE allows the application to add HTTP header information to the response.

Options

HTTPHEADER(data-area)
 specifies the name of the HTTP header to build. It is a string of text containing the name of the header. The name should conform to the standards specified in the current RFC for the HTTP protocol. No validation of the information is done by CICS. If the header already exists, it is replaced with the new information.

NAMELENGTH(data-value)
 specifies the length, as a fullword binary value, of the HTTP header name.

VALUE(data-area)
 specifies the value of the HTTP header. It is a text string containing the value of the header.

VALUELENGTH(data-area)
 specifies the length, as a fullword binary value, of the HTTP header value.

Conditions

INVREQ
 The command is being issued in a non-CICS Web interface environment.
WRITE

Write a record.

```
WRITE FILE(filename) MASSINSERT FROM(data-area) RIDFLD(data-area)

KEYLENGTH(data-value) SYSID(systemname) RBA NOSUSPEND

LENGTH(data-value)
```

Conditions: DISABLED, DUPREC, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, LENGERR, LOADING, LOCKED, NOSPACE, NOTAUTH, NOTOPEN, RECORDBUSY, SUPPRESSED, SYSIDERR

Description

WRITE writes a new record to a file on a local or a remote system.

When this command is used to write a record to a CICS-maintained data table, the update is made to both the source VSAM KSDS and the in-memory data table, unless the XDTAD user exit rejects the record from the table. The details of the command for a CICS-maintained table are the same as for a VSAM KSDS.

When this command is used to write a record to a user-maintained data table, the update is made to the in-memory data table (unless rejected by the XDTAD user exit).

When this command is used to write a record to a coupling facility data table, the update is made to the data table in the coupling facility (unless it is rejected by the XDTAD user exit).

For a VSAM ESDS, the record is always added at the end of the data set. CICS does not use the identification field specified in RIDFLD when calculating the RBA of the new record, but the new RBA is returned to the application in the record identification field specified in the RIDFLD option.

For a VSAM KSDS, the record is added in the location specified by the associated key; this location may be anywhere in the data set. For VSAM data sets, the key in the record and the key in the RIDFLD identification field must be the same.

For a VSAM ESDS or KSDS, records can be either fixed-length or variable-length. MASSINSERT operations must proceed with ascending keys, and must be terminated by an UNLOCK before any other request to the same data set.
Options

FILE(filename)
 specifies the of the file to be accessed.

If SYSID is specified, the data set to which this file refers is assumed to be on a remote system irrespective of whether the name is defined in the FCT. Otherwise, the FCT entry is used to find out whether the data set is on a local or a remote system.

FROM(data-area)
specifies the record that is to be written to the data set referred to by this file.

KEYLENGTH(data-value)
specifies the length (halfword binary) of the key that has been specified in the RIDFLD option, except when RBA or RRN is specified, in which case KEYLENGTH is not valid. You must code KEYLENGTH if you are also using SYSID (unless you are also using RBA or RRN). If the length specified is different from the length defined for the data set, the INVREQ condition occurs.

LENGTH(data-value)
specifies the length, as a halfword binary value, of the record to be written.

You must specify this option if you are using SYSID.

You must also specify the option for a file with variable-length records. It need not be specified for fixed-length records, but its inclusion is recommended because it causes a check to be made that the record being written is not longer than that defined for the data set.

MASSINSERT
(VSAM) specifies that the WRITE command is part of a mass-insert operation, that is, a series of WRITEs each specifying MASSINSERT.

You cannot use MASSINSERT for user-maintained or coupling facility data tables.

NOSUSPEND (RLS only)
The request does not wait if VSAM is holding an active lock against the record, including records locked as the result of a DEADLOCK.

A task could wait when it issues a WRITE request if the key is for a record that is being modified, created, or deleted by another task, because VSAM always acquires the lock first.

RBA
(VSAM ESDS base data sets only) specifies that the record identification field specified in the RIDFLD option contains a relative byte address. Use this option only when writing to an ESDS base.

RIDFLD(data-area)
specifies the record identification field. The contents can be a key, a relative byte address, or relative record number (for VSAM data sets), or a block reference, a physical key, and a deblocking argument (for BDAM data sets). For a relative byte address or a relative record number, the format of this field must be fullword binary. If RBA is specified, RIDFLD contains the relative byte address (greater than or equal to zero) of the record to be written. If RRN is specified, RIDFLD contains the relative record number (greater than or equal to 1) of the record to be written.

When adding records to a keyed data set, the field must contain the complete key.

RRN
(VSAM RRDS) specifies that the record identification field specified in the RIDFLD option contains a relative record number.

SYSID(systemname)
specifies the name of the system to which the request is directed.

If you specify SYSID, and omit both RBA and RRN, you must also specify LENGTH and KEYLENGTH; they cannot be found in the FCT.

LENGTH must either be specified explicitly or must be capable of being defaulted from the FROM option using the length attribute reference in assembler language, or STG and CSTG in PL/I. LENGTH must be specified explicitly in OS/VS COBOL or C.

Conditions

Note: RESP2 values are not set for files that are on remote systems.

DISABLED
RESP2 values:

50 A file is disabled because it was initially defined as disabled and has not since been enabled.

A file has been disabled by a SET FILE or a CEMT SET FILE command.

Default action: terminate the task abnormally.

DUPREC
RESP2 values:

150 An attempt is made to add a record to a data set by referring to a file, or a path over a file (with the UNIQUEKEY attribute), in which the same key already exists.

This condition is also raised for a coupling facility data table that uses the contention model, even if another task has read the record with the same key for update. (For a coupling facility data table that uses the locking model, and for all other kinds of files, if another task has read the record for update, it is locked, and the WRITE request waits for the lock to be released, rather than returning a DUPREC response immediately.)
WRITE

Default action: terminate the task abnormally.

FILENOTFOUND
RESP2 values:
1 A file name referred to in the FILE option cannot be found in the FCT.

Default action: terminate the task abnormally.

ILLOGIC
RESP2 values: (VSAM)
110 A VSAM error occurs that does not fall within one of the other CICS response categories.
(See EIBRCODE in the EXEC interface block; refer to Appendix A, “EXEC interface block” on page 387 for details.)

Default action: terminate the task abnormally.

INVREQ
RESP2 values:
20 Add operations are not allowed according to the file entry specification in the FCT.
23 When writing records containing embedded keys, the key in the record area (FROM option) and the key in RIDFLD do not match.
26 The KEYLENGTH option is specified, and the specified length does not equal the length defined for the data set that this file refers to.
38 A WRITE with the MASSINSERT option is issued against a BDAM file.
40 A BDAM key conversion error occurred.
44 The WRITE command does not conform to the format of WRITE for a user-maintained or coupling facility data table (for example, MASSINSERT or RBA is specified).
51 A WRITE command specifying the RBA keyword was issued against a KSDS file that is being accessed in RLS mode. RLS mode does not support relative byte address access to KSDS files.
56 An attempt to update a recoverable coupling facility data table has failed because the current unit of work has already updated 1024 recoverable coupling facility data tables. You cannot update more than 1024 recoverable coupling facility data tables within a unit of work.

Default action: terminate the task abnormally.

IOERR
RESP2 values:
120 There is an I/O error during the file control operation. An I/O error is any unusual event that is not covered by a CICS condition. (Further information is available in the EXEC interface block; refer to Appendix A, “EXEC interface block” on page 387 for details.)
For VSAM files, IOERR normally indicates a hardware error.
For BDAM files, IOERR could mean that you are trying to write to a BDAM track address that is not defined for the data set.
For a coupling facility data table, an IOERR indicates a bad response returned from a coupling facility access.

Default action: terminate the task abnormally.

ISCINVREQ
RESP2 values:
70 The remote system indicates a failure that does not correspond to a known condition.

Default action: terminate the task abnormally.

LENGERR
RESP2 values:
12 The length specified for the write operation exceeds the maximum record size; the record is truncated.
10 LENGTH is omitted for a WRITE to a file with variable-length records or to a BDAM file with undefined format records.
14 An incorrect length is specified for a write operation involving fixed-length records.

LOADING
RESP2 values:
104 The request cannot be satisfied because it is issued against a data table that is still being loaded. The condition can be raised for one of the following reasons:
• The WRITE specifies a record key that has out of range of the records so far loaded into a coupling facility data table. Records can be added while a CFDT is loading only if the specified key is within the range of those records already loaded.
The LOADING response can also be returned for a coupling facility data table that has failed during loading. For more information about what happens if the load for a coupling facility data table fails, see the description of the XDTLC global user exit in the CICS Customization Guide.
• A WRITE is issued to a user-maintained data table that is currently being loaded. A user-maintained data table cannot be modified during loading.
If your application programs encounter the LOADING condition persistently or too frequently, check that this is not caused by conflicting file definitions that reference the same data set.

Default action: terminate the task abnormally.

LOCKED

RESP2 values:

106 An attempt has been made to write a record, but a retained lock exists against the key of this record.

Default action: abend the task with code AEX8.

NOSPACE

RESP2 values:

100 No space is available on the direct access device for adding records to a data set.

102 The maximum number of table entries specified for the user-maintained table or coupling facility data table has already been reached.

This condition can also occur for a recoverable coupling facility data table when the table apparently contains fewer than the maximum number of records allowed if there are uncommitted updates outstanding.

103 CICS is unable to get sufficient storage in the CICS address space to create an in-memory table entry for the record being written.

108 There is insufficient space in the coupling facility data table pool to store the record.

Default action: terminate the task abnormally.

NOTAUTH

RESP2 values:

101 A resource security check has failed on FILE(filename).

Default action: terminate the task abnormally.

NOTOPEN

RESP2 values:

60 NOTOPEN (RESP2 60) is returned for one of the following reasons:

- The requested file is CLOSED and UNENABLED. The CLOSED, UNENABLED state is reached after a CLOSE request has been received against an OPEN ENABLED file and the file is no longer in use. You can also make CLOSED, UNENABLED the initial state, by specifying STATUS(UNENABLED) and OPENTIME(FIRSTREF) on the FILE resource definition. (For BDAM files, you use the FILSTAT parameter of the DFHFCT TYPE=FILE macro.)

- The requested file is OPEN and in use by other transactions, but a CLOSE request against the file has been received.

- A WRITE request is issued against a data set that is being quiesced, as a result of a SET DSNAME QUIESCED or IMMQUIESCED command.

This condition does not occur if the request is made to either a CLOSED, ENABLED file or a CLOSED, DISABLED file. In the first case, the file is opened as part of executing the request. In the second case, the DISABLED condition occurs.

Default action: terminate the task abnormally.

RECORDBUSY

RESP2 values:

107 NOSUSPEND is specified on the request but VSAM holds an active lock against the record, which would cause the request to wait (see "Retained and active locks" below).

Default action: abend the task with code AEX9.

SUPPRESSED

RESP2 values:

105 A user exit program that is invoked at the XDTAD exit point decides not to add the record to the user-maintained or coupling facility data table.

Default action: terminate the task abnormally.

SYSIDERR

RESP2 values:

130 The SYSID option specifies a name that is neither the local CICS region nor a remote system defined to CICS by a CONNECTION definition.

SYSIDERR also occurs when the link to the remote system is closed.

131 For a coupling facility data table, the connection to the coupling facility data table server has failed. This could be because the server itself has failed, or the server is available, but CICS has failed to connect to it.

132 The WRITE is issued against a coupling facility data table that no longer exists, probably because of a coupling facility failure, in which case the coupling facility data table server also fails. See the CICS System Definition Guide for information about restarting a coupling facility data table server and reloading a table.

Default action: terminate the task abnormally.

Retained and active locks: RECORDBUSY refers to active locks, and LOCKED refers to retained locks:
WRITE

- READNEXT requests for records that have *retained* locks are always rejected with a LOCKED response.
- READNEXT requests for records that have *active* locks wait for the lock to be released, except when the NOSUSPEND keyword is specified, in which case CICS returns the RECORDBUSY response.

Examples

For example:

```cics
EXEC CICS WRITE
   FROM(RECORD)
   LENGTH(DATLEN)
   FILE('MASTER')
   RIDFLD(KEYFLD)
```
WRITE JOURNALNAME

Create a journal record

```plaintext
WRITE JOURNALNAME(data-value) — JTYPEID(data-value) — FROM(data-area) — FLENGTH(data-value) 
-REQID(data-area) -PREFIX(data-value) -PFXLENG(data-value) -WAIT -NOSUSPEND
```

Conditions: INVREQ, IOERR, JIDERR, LENGERR, NOJBUFSP, NOTAUTH, NOTOPEN

Description

WRITE JOURNALNAME writes a journal record from the specified data area to the system logger log stream that corresponds to the CICS journal name, or to SMF. The request can be for synchronous or asynchronous output; definitions of these terms, and information regarding the synchronization of journal output, are in the CICS Application Programming Guide.

Options

FLENGTH(data-value) specifies, as a full word binary value, the length in bytes of the user data to be built into the journal record.

Note: Data longer than 32K bytes cannot be read by offline jobs using the SUBSYS=LOGR interface.

FROM(data-area) specifies the user data to be built into the journal record.

JOURNALNAME(data-value) specifies a 1- to 8-character journal name. The valid characters for a journal name are the upper-case letters A through Z, the numeric characters 0 through 9, and the special symbols $ @ and #.

On first reference to this journal name, CICS must be able to map the journal name to a corresponding MVS system logger log stream, or MVS SMF data set. To do this, CICS searches the installed JOURNALMODEL definitions, looking for a matching journal name in a journal model. CICS looks for either a specific match or a generic match. If a matching entry cannot be found, CICS attempts to use a default log stream name.

To write to the CICS system log, specify DFHLOG as the journal name.

Note: The CICS system log should be used only for short-lived data required for recovery purposes. You should not write user records for such things as audit trails to it.

To write to journals defined using the journal numbering convention (for example, to the auto journals defined in file resource definitions), specify the name as DFHJnn, where nn is the journal number in the range 1 to 99.

Note: Specifying DFHJ01 on this command refers to a user journal, not the system log.

You cannot write to a forward recovery log that is known to CICS only by its 26-character log stream name (as derived directly from the VSAM ICF catalog) unless you write to a journal whose matching JOURNALMODEL is associated with the same log stream name.

JTYPEID(data-value) specifies a 2-character identifier to be placed in the journal record to identify its origin.

NOSUSPEND specifies that the application program is not to be suspended for the NOJBUFSP condition. The user record is ignored.

PFXLENG(data-value) specifies the length (halfword binary value) in bytes of the user prefix data to be included in the journal record.

Note that the maximum total length of a journal record depends on a number of factors:

- There is a limit of 32KB minus 400 bytes if the journal is using SMF.
- The limit for journals that map to log streams is the value expressed in the MAXBUFSIZE attribute for the structure being used minus 400 bytes. This has to include the user data, the prefix data, and the 2-byte JTYPEID.

Note: Data longer than 32K bytes cannot be read by offline jobs using the SUBSYS=LOGR interface.
WRITE JOURNALNAME

to include the prefix data, the user data, and the
2-byte JTYPEID.

The minimum value is 0. See FLENGTH for the limits to
the size of a journal record.

Note: Data longer than 32K bytes cannot be read by
offline jobs using the SUBSYS=LOGR interface.

PREFIX(data-value)
specifies the user prefix data to be included in
the journal record. A data area must be provided in COBOL
programs.

REQID(data-area)
specifies a data area that identifies the journal record.
The data area is a fullword binary variable. CICS sets
the variable to a token that can be used for
synchronization. REQID is only valid for asynchronous
output (that is, the WAIT option is not specified).

WAIT
specifies that synchronous journal output is required.
The requesting task waits until the record has been
hardened.

Conditions

INVREQ
the command is not valid for processing by CICS.
Default action: Terminate the task abnormally.

IOERR
a journal record has not been output because an
irrecoverable error condition was returned by the system
logger log stream or by SMF.
Default action: If the log is the system log, CICS either
quiesces or abends CICS. If the log is a general log, the
task is terminated abnormally.

JIDERR
CICS cannot connect to a log stream referenced by the
specified journal name, for one of the following reasons:

- The log stream does not exist and cannot be
 created dynamically using default model definitions.
- The log stream is a DASD-only log stream to which
 a CICS region in another MVS image is currently
 connected.

Default action: terminate the task abnormally.

LENGERR
the aggregate length of the journal record, comprising
the user data (FROM, JTYPE, and PREFIX data) and
the CICS header data, is too great to fit the maximum
block size allowed for the log stream.
Default action: terminate the task abnormally.

NOJBUFSP
the journal buffers are logically full (that is, the current
buffer has insufficient space for this journal record, and
I/O is in progress on the alternate buffer).
Default action: CICS suspends task activity until the
journal request can be satisfied. CICS ensures that both
buffers are written out to auxiliary storage, thus freeing
them for new records. (You can override the default
action by the NOSUSPEND option.)

NOTAUTH
a resource security check has failed on the
JOURNALNAME(data-value). resource.
Default action: terminate the task abnormally.

NOTOPEN
occurs in any of the following situations:

- The command cannot be executed because the
 specified journal has been explicitly disabled by the
 user.
- The request could not be satisfied because the
 specified journal was defined using a journal model
 that maps it onto the log stream that is being used
 as the system log for this CICS system. The error is
 detected when trying to connect to the log stream
 and results in a definition for the JOURNALNAME
 being installed and set to ‘failed’.

Default action: terminate the task abnormally.

Examples

The following example shows how to write synchronous
journal output and wait for the output operation to be
completed:

```
EXEC CICS WRITE
  JOURNALNAME('ACCTSJNL')
  JTYPEID('XX')
  FROM(KEYDATA)
  FLENGTH(4/zerodot/zerodot/zerodot/zerodot)
  PREFIX(PROGNAME)
  PFXLENG(6)
  WAIT
```

The following example shows how to write deferred
(asynchronous) user recovery data to the CICS system log:

```
EXEC CICS WRITE
  JOURNALNAME('DFHLOG')
  JTYPEID('UR')
  FROM(COMDATA)
  FLENGTH(1/zerodot)
  REQID(ENTRYID)
```
WRITE JOURNALNUM

Create a journal record.

Note: This command is supported for compatibility with earlier releases of CICS. It is superseded by the WRITE JOURNALNAME command, which you are recommended to use instead.

The syntax is, apart from FLENGTH, the same as for WRITE JOURNALNAME except that JOURNALNUM specifies a numeric instead of a character value. The numeric value, nn, is in the range 01–99 and corresponds to journal name DFHJnn.
WRITE OPERATOR

Description

WRITE OPERATOR enables an application to write a message to one or more system consoles and, if necessary, wait for a reply. The command can specify route codes. This is of particular use to application packages that need to issue their own operator messages.

As a result of a change in the way CICS handles messages sent to the console, text lengths of greater than 113 characters are split into two lines.

None of the variables below can be defined as PL/I variable character strings.

Note: If ACTION (or one of the equivalent CVDA values below) is specified, the message is retained until the console operator explicitly deletes it or CICS terminates.

The action code is identical with the descriptor code to be associated with the message. Only one of the descriptor codes 2, 3, or 11 may be specified for this parameter.

If ACTION is not specified, no descriptor code is associated with the message. The descriptor codes have the following meanings:

2 Immediate action
3 Eventual action
11 Critical eventual action.

The CRITICAL option is equivalent to a specification of ACTION(11). The EVENTUAL option is equivalent to a specification of ACTION(3). The IMMEDIATE option is equivalent to a specification of ACTION(2).

Retained messages can be handled by the console operator in a variety of ways (see the MVS/ESA Operations: System Commands manual). Refer to your system programmer for information about how this command affects the appearance of the console screen to the operator.

Options

ACTION(cvda)

specifies an action code to be associated with this message. CVDA values are:

- **CRITICAL**
 specifies that the message requires eventual action by the operator and has enough critical importance to remain on the console screen. The message remains on the screen until it is deleted by the operator.

- **EVENTUAL**
 specifies that the operator should take action when there is time. The message is rolled off when other messages fill up the screen, but is still retained by the operating system until the operator explicitly deletes it.

- **IMMEDIATE**
 specifies that the operator should take action immediately. The message remains on the console screen until it is deleted by the operator.

MAXLENGTH(data-value)

is a fullword binary field that contains the length of the reply area (in the range 1–119 bytes). You must specify MAXLENGTH if you specify REPLY.

NUMROUTES(data-value)

is a fullword binary field that defines the number of routing codes.

REPLY(data-area)

provides a data area for receiving the operator’s reply. If you specify this option, your application pauses until
either a reply is received or the TIMEOUT period expires.

REPLYLENGTH(data-area)
specifies the actual length (fullword binary value) of the operator’s reply.

ROUTECODES(data-value)
is a variable-length field. Each code is one byte and contains a binary number in the range 1–28. The default is a single code, set to 2. In COBOL programs only, you must use a data-area that contains the 1-byte values rather than a data-value.

TEXT(data-value)
is a data value containing the text to be sent. In COBOL programs only, you must use a data-area that contains the text to be sent to the operator, rather than a data-value.

TEXTLENGTH(data-value)
specifies the length (fullword binary value) of the text.
If the REPLY option is specified, the length is in the range 0–121 bytes.
If the REPLY option is not specified, the length is in the range 0–690 bytes.
If the length of the text is greater than 113, CICS formats the message in a multiline write to operator (WTO); each line has 69 bytes with a maximum of ten lines.

The output is edited in such a way that each line is broken, if possible, at a space character. The next line starts with a non-space character. If there is no room to reformat the data within the overall limit of 690 bytes of ten lines of 69 bytes, the output is not reformatted.

TIMEOUT(data-value)
is a fullword binary field that contains the maximum time (in seconds) that CICS waits for a reply before returning control to this transaction. This must be in the range 0–86400 (24 hours). The system default value is specified by the OPERTIM system initialization parameter. You can only specify TIMEOUT if you have also specified REPLY.

Conditions

EXPIRED
RESP2 values:

1 The TEXTLENGTH value is not valid.
2 The NUMROUTES value is not valid.
7 TIMEOUT has occurred before the operator’s reply was received.

Default action: terminate the task abnormally.

LENGERR
RESP2 values:

8 The reply was longer than MAXLENGTH, and has been truncated.

Default action: terminate the task abnormally.
WRITEQ TD

WRITEQ TD

Write data to transient data queue.

```plaintext
WRITEQ TD ─ QUEUE(name) ─ FROM(data-area) ─ LENGTH(data-value) ─ SYSID(systemname)
```

Conditions: DISABLED, INVREQ, IOERR, ISCINVREQ, LENGERR, LOCKED, NOSPACE, NOTAUTH, NOTOPEN, QIDERR, SYSIDERR

Description

WRITEQ TD writes transient data to a predefined symbolic destination.

Options

FROM(data-area)
 specifying the data that is to be written to the transient data queue.

LENGTH(data-value)
 specifying the length (halfword binary value) of the data to be written.

QUEUE(name)
 specifying the symbolic name (1–4 alphanumeric characters) of the queue to be written to. The named queue must have been defined to CICS.

SYSID(systemname)
 (remote systems only) specifies the name (1–4 characters) of the system to which the request is directed.

If SYSID is specified, the data set is assumed to be on a remote system irrespective of whether or not the name is defined as remote in the DCT. Otherwise the entry in the DCT is used to find out whether the data set is on a local or a remote system.

Conditions

DISABLED
 occurring when the queue has been disabled.
 Default action: terminate the task abnormally.

INVREQ
 occurring if WRITEQ names an extrapartition queue that has been opened for input.

Note: This condition cannot be raised for intrapartition queues.
 Default action: terminate the task abnormally.

IOERR
 occurring when an input/output error occurs and the data record in error is skipped.
 Default action: terminate the task abnormally.

ISCINVREQ
 occurring when the remote system indicates a failure that does not correspond to a known condition.
 Default action: terminate the task abnormally.

LENGERR
 occurring in any of the following situations:

- WRITEQ names an extrapartition queue and does not specify a length consistent with the RECFORMAT and RECSIZE options specified in the destination control table TYPE=SDSCI that defined the queue. The check is made after the XTDOUT exit has been invoked; this exit may change the length of the data to be passed to the access method.

- WRITEQ names an intrapartition queue and does not specify a length consistent with the control interval defined for the intrapartition data set. Again, the check is made after the XTDOUT exit has been invoked.

Default action: terminate the task abnormally.

LOCKED
 occurring when the request cannot be performed because use of the queue has been restricted owing to a unit of work failing in-doubt. This can happen on any request for a logically-recoverable queue defined with WAIT(YES) and WAITACTION(REJECT) in the TDQUEUE resource definition.

Specify WAIT(YES) and WAITACTION(QUEUE) in the TDQUEUE resource definition if you want the transaction to wait.
 Default action: terminate the task abnormally.

NOSPACE
 occurring if no more space exists on the intrapartition or extrapartition queue, or the relative byte address (RBA) for an intrapartition queue would exceed 2 gigabytes.

380 CICS Application Programming Reference
When this happens, no more data should be written to the queue because it may be lost.
Default action: terminate the task abnormally.

NOTAUTH
occurs when a resource security check has failed on QUEUE(name).
Default action: terminate the task abnormally.

NOTOPEN
occurs if the destination is closed.

Note: This condition cannot be raised for intrapartition queues.
Default action: terminate the task abnormally.

QIDERR
occurs if the symbolic destination to be used with a transient data control command cannot be found.
Default action: terminate the task abnormally.

SYSIDERR
occurs when the SYSID option specifies a name that is neither the local system nor a remote system (made known to CICS by defining a CONNECTION).
SYSIDERR also occurs when the link to the remote system is closed.
Default action: terminate the task abnormally.

Examples
The following example shows how to write data to a predefined symbolic destination; in this case, the control system message log (CSML):

```cics
EXEC CICS WRITEQ TD
QUEUE('CSML')
FROM(MESSAGE)
LENGTH(LENG)
```
WRITEQ TS

Write data to a temporary storage queue.

FROM(data-area)
specifies the data to be written to temporary storage.

ITEM(data-area)
specifies, as a halfword binary value, the item number of the logical record to be replaced in the queue (REWRITE option also specified).

ITEM can be both an input and output field to CICS. As such, programmers should ensure that the ITEM field is not defined within protected storage when issuing a WRITEQ command. If the ITEM value were a literal (for example), command checking (CMDPROT=YES) would result in an AEYD abend occurring.

Note: In earlier releases, ITEM on a WRITEQ TS without REWRITE would perform a similar function to NUMITEMS. This function is retained for compatibility.

LENGTH(data-value)
specifies the length, as a halfword binary value, of the data to be written.

You must specify this option if you are using SYSID.

The maximum length is 32763. For a description of a safe upper limit, see “LENGTH options” on page 5.

MAIN
specifies that the temporary storage queue is in main storage.

This option is ignored:

- for an existing queue,
- if a TSMODEL resource definition with a matching prefix is installed in the system.
- if the AUXILIARY option is specified for a temporary storage data queue that resides in a temporary storage pool.

OPTIONS

AUXILIARY
specifies that the temporary storage queue is on a direct access storage device in auxiliary storage. This is the default value for the first write.

This option is ignored:

- for an existing queue,
- if a TSMODEL resource definition with a matching prefix is installed in the system.
- if the AUXILIARY option is specified for a temporary storage data queue that resides in a temporary storage pool.

Conditions: INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, LOCKED, NOSPACE, NOTAUTH, QIDERR, SYSIDERR

Note for dynamic transaction routing

Using this command could create inter-transaction affinities that adversely affect the use of dynamic transaction routing. See the CICS Application Programming Guide for more information about transaction affinities.

Description

WRITEQ TS stores temporary data (records) in a temporary storage queue in main or auxiliary storage.

If a queue has been defined as recoverable, the program must not issue a WRITEQ TS if a DELETEQ TS has previously been issued within the same logical unit of work. In other words, following a DELETEQ TS, no WRITEQ TS can be issued until after a syncpoint has occurred.

If there is insufficient space available in the temporary storage data set to satisfy the WRITEQ TS request, the task is suspended until space does become available. (Space may be released by other tasks in the system.) If, however, space is not available in the temporary storage data set, and the NOSUSPEND option has been specified, or there is an active HANDLE CONDITION for NOSPACE, the NOSPACE condition is raised.

Options

AUXILIARY
specifies that the temporary storage queue is on a direct access storage device in auxiliary storage. This is the default value for the first write.

This option is ignored:

- for an existing queue,
- if a TSMODEL resource definition with a matching prefix is installed in the system.
- if the AUXILIARY option is specified for a temporary storage data queue that resides in a temporary storage pool.
WRITEQ TS

- if the MAIN option is specified for a temporary storage data sharing queue that resides in a temporary storage pool.

If you use the MAIN option to write data to a temporary storage queue on a remote system, the data is stored in main storage if the remote system is accessed by the CICS multiregion operation (MRO) facility. If these conditions are not met, the data is stored in auxiliary storage.

If the system is MRO and MAIN is specified, the queue is not recoverable and SYNCPOINT ROLLBACK does not function.

NOSUSPEND specifies that the application program is not to be suspended if there is insufficient space in the temporary storage data set to satisfy the WRITEQ TS request. Instead, the NOSPACE condition is raised.

Note, however, that if a HANDLE CONDITION for NOSPACE is active when the command is executed, this also overrides the default action, and control is passed to the user label supplied in the HANDLE CONDITION. This takes precedence over the NOSUSPEND option but is, of course, negated by either NOHANDLE or RESP.

This does not apply to the MAIN queue.

NUMITEMS(data-area) specifies a halfword binary field into which CICS stores a number indicating how many items there are now in the queue, after the WRITEQ TS command is executed.

If the record starts a new queue, the item number assigned is 1; subsequent item numbers follow on sequentially. NUMITEMS is not valid if REWRITE is specified.

QUEUE(name) specifies the symbolic name (1–8 characters) of the queue to be written to. If the queue name appears in the TST, and the entry is marked as remote, the request is shipped to a remote system. The name must be unique within the CICS system. Do not use X'FA' through X'FF', or '**', or $$, or DF, as the first character of the name; these characters are reserved for CICS use. The name cannot consist solely of binary zeros.

QNAME(name) an alternative to QUEUE, QNAME specifies the symbolic name (1–16 characters) of the queue to be written to. If the queue name appears in the TST, and the entry is marked as remote, or if the QNAME is described by a TSMODEL resource definition which identifies a remote system, the request is shipped to a remote system. The name must be unique within the CICS system. Do not use X'FA' through X'FF', or '**', or $$, or DF, as the first character of the name; these characters are reserved for CICS use. The name cannot consist solely of binary zeros.

REWRITE specifies that the existing record in the queue is to be overwritten with the data provided. If the REWRITE option is specified, the ITEM option must also be specified. If the specified queue does not exist, the QIDERR condition occurs. If the correct item within an existing queue cannot be found, the ITEMERR condition occurs and the data is not stored.

SYSID(systemname) (remote and shared queues only) specifies the system name (1–4 characters) identifying the remote system or shared queue pool to which the request is directed.

Conditions

INVREQ occurs in any of the following situations:
- A WRITEQ TS command specifies a queue name that consists solely of binary zeros.
- A WRITEQ TS command specifies a queue that is locked and awaiting ISC session recovery.
- The queue was created by CICS internal code.

Default action: terminate the task abnormally.

IOERR occurs when there is an irrecoverable input/output error.

Default action: terminate the task abnormally.

ISCINVREQ occurs when the remote system indicates a failure that does not correspond to a known condition.

Default action: terminate the task abnormally.

ITEMERR occurs in any of the following situations:
- The item number specified in a WRITEQ TS command with the REWRITE option, is not valid (that is, it is outside the range of entry numbers assigned for the queue).
- The maximum number of items (32 767) is exceeded.

Default action: terminate the task abnormally.

LENGERR occurs in any of the following situations:
- The length of the stored data is zero or negative.
- The length of the stored data is greater than 32763.

Default action: terminate the task abnormally.

LOCKED occurs when the request cannot be performed because use of the queue has been restricted owing to a unit of work failing in-doubt.
WRITEQ TS

Default action: terminate the task abnormally.

NOSPACE
occurs when the NOSUSPEND option is specified and there is no space for the data in:

- The auxiliary temporary storage data set
- The temporary storage pool list structure

Also occurs if there is no space and there is an active HANDLE CONDITION for NOSPACE.

Default action: ignore the condition.

NOTAUTH
occurs when a resource security check has failed on QUEUE(name).

Default action: terminate the task abnormally.

QIDERR
occurs when the queue specified by a WRITEQ TS command with the REWRITE option cannot be found, either in:

- Main storage
- Auxiliary storage
- Temporary storage pool

Default action: terminate the task abnormally.

SYSIDERR
occurs in any of the following situations:

- When the SYSID option specifies a name that is neither the local system nor a remote system (made known to CICS by defining a CONNECTION).
- The link to the remote system is closed.
- When the CICS region in which the temporary storage command is executed fails to connect to the TS server managing the TS pool that supports the referenced temporary storage queue. (For example, this can happen if the CICS region is not authorized to access the temporary storage server).

SYSIDERR can also occur if the temporary storage server has not been started, or because the server has failed (or been stopped) while CICS continues executing.

Default action: terminate the task abnormally.
XCTL

Transfer program control.

Description

XCTL transfers control from one application program to another at the same logical level. The program from which control is transferred is released. If the program to which control is transferred is not already in main storage, it is loaded.

Options

COMMAREA(data-area)
specifies a communication area to be made available to the invoked program. In this option the contents of the data-area are passed. In COBOL, you must give this data area the name DFHCOMMAREA in the receiving program. (See the section about passing data to other programs in the CICS Application Programming Guide.)

INPUTMSG(data-area)
specifies data to be passed to the invoked program when it first issues a RECEIVE command. If the invoked program passes control to another program by a LINK command, a linked chain is created, as described under the INPUTMSG option of the LINK command. The INPUTMSG data remains available until a RECEIVE command is issued or until control returns to CICS.

INPUTMSGLEN(data-value)
specifies a halfword binary value that specifies the length of the data passed by INPUTMSG.

LENGTH(data-value)
specifies the length (halfword binary data value) in bytes of the communication area. For a description of a safe upper limit, see “LENGTH options” on page 5.

PROGRAM(name)
specifies the identifier (1–8 alphanumeric characters) of the program to which control is to be passed unconditionally. The specified name must have been defined as a program to CICS, though if AUTOINSTALL is active a definition is autoinstalled.

Conditions

INVREQ

RESP2 values:

- 8 An XCTL command with the INPUTMSG option is issued for a program that is not associated with a terminal, or that is associated with an APPC logical unit, or an IRC session.
- 29 EXEC XCTL is not allowed in a GLUE or TRUE.
- 30 The program manager domain has not yet been initialized. This is probably due to a XCTL request having been made in a first stage PLT.
- 200 An XCTL command with the INPUTMSG option is issued in a program invoked by DPL.

Default action: terminate the task abnormally.

LENGERR

RESP2 values:

- 11 LENGTH is less than 0 or greater than 32763.
- 26 The COMMAREA address passed was zero, but LENGTH was non-zero.
- 27 INPUTMSGLEN was less than 0 or greater than 32767.
- 28 LENGTH or INPUTMSGLEN is greater than the length of the data area specified in the COMMAREA or INPUTMSG options, and while that data was being copied a destructive overlap occurred because of the incorrect length.

Default action: terminate the task abnormally.

NOTAUTH

RESP2 values:

- 101 A resource security check has failed on PROGRAM(name).

Default action: terminate the task abnormally.
XCTL

PGMIDERR

RESP2 values:

1 A program has no entry in the PPT and either
 program autoinstall was switched off, or the
 program autoinstall control program indicated that
 the program should not be autoinstalled.

2 The program is disabled.

3 A program could not be loaded because:
 - This was the first load of the program and the
 program load failed, usually because the load
 module could not be found.
 - This was a subsequent load of the program,
 but the first load failed.

 In order to reset the load status the load module
 must be in the DFHRPL concatenation, and a SET
 PROGRAM NEWCOPY will be required

9 The installed program definition is for a remote
 program.

21 The program autoinstall control program failed
 either because the program autoinstall control
 program is incorrect, incorrectly defined, or as a
 result of an abend in the program autoinstall
 control program. Program autoinstall is disabled
 and message DFHPG0202 or DFHPG0203 written
 to the CSPL.

22 The model returned by the program autoinstall
 control program was not defined in the PPT table,
 or was not enabled.

23 The program autoinstall control program returned
 invalid data.

24 Define for the program failed due to autoinstall
 returning an invalid program name or definition.

 Default action: terminate the task abnormally.

Examples

The following example shows how to request a transfer of
control to an application program called PROG2:

EXEC CICS XCTL PROGRAM('PROG2')
Appendix A. EXEC interface block

This appendix contains a description of the EXEC interface block (EIB). An application program can read all the fields in the EIB of the associated task by name, but must not change the contents of any of them other than through an EXEC CICS command.

For each field, the contents and format (for each of the application programming languages COBOL, C, PL/I, and ASM) are given. All fields contain zeros in the absence of meaningful information. Fields are listed in alphabetical order.

EIB fields

EIBAID
contains the attention identifier (AID) associated with the last terminal control or basic mapping support (BMS) input operation from a display device such as the 3270.

<table>
<thead>
<tr>
<th>COBOL</th>
<th>C:</th>
<th>PL/I</th>
<th>ASM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC X(1)</td>
<td>unsigned char</td>
<td>CHAR(1)</td>
<td>CL1</td>
</tr>
</tbody>
</table>

EIBATT
indicates that the RU contains attach header data (X'FF').

<table>
<thead>
<tr>
<th>COBOL</th>
<th>C:</th>
<th>PL/I</th>
<th>ASM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC X(1)</td>
<td>unsigned char</td>
<td>CHAR(1)</td>
<td>CL1</td>
</tr>
</tbody>
</table>

EIBCALEN
contains the length of the communication area that has been passed to the application program from the last program, using the COMMAREA and LENGTH options. If no communication area is passed, this field contains zeros.

<table>
<thead>
<tr>
<th>COBOL</th>
<th>C:</th>
<th>PL/I</th>
<th>ASM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC S9(4) COMP</td>
<td>short int</td>
<td>FIXED BIN(15)</td>
<td>H</td>
</tr>
</tbody>
</table>

EIBCOMPL
indicates, on a terminal control RECEIVE command, whether the data is complete (X'FF'). If the NOTRUNCATE option has been used on the RECEIVE command, CICS retains data in excess of the amount requested via the LENGTH or MAXLENGTH option. EIBRECV is set indicating that further RECEIVE commands are required. EIBCOMPL is not set until the last of the data has been retrieved. EIBCOMPL is always set when a RECEIVE command without the NOTRUNCATE option is executed.

<table>
<thead>
<tr>
<th>COBOL</th>
<th>C:</th>
<th>PL/I</th>
<th>ASM:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC X(1)</td>
<td>unsigned char</td>
<td>CHAR(1)</td>
<td>CL1</td>
<td></td>
</tr>
</tbody>
</table>

EIBCONF
indicates that a CONFIRM request has been received (X'FF') for an APPC conversation.

<table>
<thead>
<tr>
<th>COBOL</th>
<th>C:</th>
<th>PL/I</th>
<th>ASM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC X(1)</td>
<td>unsigned char</td>
<td>CHAR(1)</td>
<td>CL1</td>
</tr>
</tbody>
</table>

EIBCPOSN
contains the cursor address (position) associated with the last terminal control or basic mapping support (BMS) input operation from a display device such as the 3270.

<table>
<thead>
<tr>
<th>COBOL</th>
<th>C:</th>
<th>PL/I</th>
<th>ASM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC S9(4) COMP</td>
<td>short int</td>
<td>FIXED BIN(15)</td>
<td>H</td>
</tr>
</tbody>
</table>

EIBDATE
contains the date the task is started; this field is updated by the ASKTIME command. The date is in packed decimal form (CYYDDD+) where C shows the century with values 0 for the 1900s and 1 for the 2000s. For example, the dates 31 December 1999 and 1 January 2000 have EIBDATE values of 0099365 and 0100001 respectively.

<table>
<thead>
<tr>
<th>COBOL</th>
<th>C:</th>
<th>PL/I</th>
<th>ASM:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC S9(7) COMP-3</td>
<td>char</td>
<td>FIXED DEC(7,0)</td>
<td>PL4</td>
<td></td>
</tr>
</tbody>
</table>

EIBDS
contains the symbolic identifier of the last data set referred to in a file control request.

<table>
<thead>
<tr>
<th>COBOL</th>
<th>C:</th>
<th>PL/I</th>
<th>ASM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC X(8)</td>
<td>char eibds</td>
<td>CHAR(8)</td>
<td>CL8</td>
</tr>
</tbody>
</table>
EIBEOC
indicates that an end-of-chain indicator appears in the RU just received (X'FF').

COBOL: PIC X(1).
C: unsigned char eibeco;
PL/I: CHAR(1)
ASM: CL1

EIBERR
indicates that an error has been received (X'FF') on an APPC conversation.

COBOL: PIC X(1).
C: unsigned char eiberr;
PL/I: CHAR(1)
ASM: CL1

EIBERRCD
when EIBERR is set, contains the error code that has been received. The following values can be returned in the first two bytes of EIBERRCD:
- X'0889' Conversation error detected.
- X'0824' SYNCPOINT ROLLBACK requested.

COBOL: PIC X(4).
C: char eiberrcd [4];
PL/I: CHAR(4)
ASM: CL4

See the [CICS Distributed Transaction Programming Guide](#) for information about other EIBERRCD values that can occur.

EIBFMH
indicates that the user data just received or retrieved contains an FMH (X'FF').

COBOL: PIC X(1).
C: unsigned char eibfmh;
PL/I: CHAR(1)
ASM: CL1

EIBFN
contains a code that identifies the last CICS command issued by the task.

COBOL: PIC X(2).
C: char eibfn [2];
PL/I: CHAR(2)
ASM: CL2

Code Command
- 0202 ADDRESS
- 0204 HANDLE CONDITION
- 0206 HANDLE AID
- 0208 ASSIGN
- 020A IGNORE CONDITION
- 020C PUSH HANDLE
- 020E POP HANDLE
- 0210 ADDRESS SET
- 0402 RECEIVE
- 0404 SEND
- 0406 CONVERSE
- 0408 ISSUE EODS
- 040A ISSUE COPY
- 040C WAIT TERMINAL
- 040E ISSUE LOAD
- 0410 WAIT SIGNAL
- 0412 ISSUE RESET
- 0414 ISSUE DISCONNECT
- 0416 ISSUE ENDOUTPUT
- 0418 ISSUE ERASEAUP
- 041A ISSUE ENDFILE
- 041C ISSUE PRINT
- 041E ISSUE SIGNAL
- 0420 ALLOCATE
- 0422 FREE
- 0424 POINT
- 0426 BUILD ATTACH
- 0428 EXTRACT ATTACH
- 042A EXTRACT TCT
- 042C WAIT CONVID
- 042E EXTRACT PROCESS
- 0430 ISSUE ABEND
- 0432 CONNECT PROCESS
- 0434 ISSUE CONFIRMATION
- 0436 ISSUE ERROR
- 0438 ISSUE PREPARE
- 043A ISSUE PASS
- 043C EXTRACT LOGONMSG
- 043E EXTRACT ATTRIBUTES
- 0602 READ
- 0604 WRITE
- 0606 REWRITE
- 0608 DELETE
- 060A UNLOCK
- 060C STARTBR
- 060E READNEXT
- 0610 READPREV
- 0612 ENDBR
- 0614 RESETBR
- 0616 UNDO
- 0802 WRITEQ TD
- 0804 READQ TD
- 0806 DELETEQ TD
- 0A02 WRITEQ TS
- 0A04 READQ TS
- 0A06 DELETEQ TS
- 0C02 GETMAIN
- 0C04 FREEMAIN
Appendix A. EXEC interface block

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0E02</td>
<td>LINK</td>
<td>2014</td>
<td>DEFINE D COUNTER</td>
</tr>
<tr>
<td>0E04</td>
<td>XCTL</td>
<td>2016</td>
<td>GET D COUNTER</td>
</tr>
<tr>
<td>0E06</td>
<td>LOAD</td>
<td>2018</td>
<td>UPDATE D COUNTER</td>
</tr>
<tr>
<td>0E08</td>
<td>RETURN</td>
<td>201A</td>
<td>DELETE D COUNTER</td>
</tr>
<tr>
<td>0E0A</td>
<td>RELEASE</td>
<td>201C</td>
<td>REWIND D COUNTER</td>
</tr>
<tr>
<td>0E0C</td>
<td>ABEND</td>
<td>201E</td>
<td>QUERY D COUNTER</td>
</tr>
<tr>
<td>0E0E</td>
<td>HANDLE ABEND</td>
<td>3402</td>
<td>DEFINE ACTIVITY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3404</td>
<td>DEFINE PROCESS</td>
</tr>
<tr>
<td>1002</td>
<td>ASKTIME</td>
<td>3406</td>
<td>RUN ACTIVITY</td>
</tr>
<tr>
<td>1004</td>
<td>DELAY</td>
<td>3408</td>
<td>RUN ACQPROCESS</td>
</tr>
<tr>
<td>1006</td>
<td>POST</td>
<td>340E</td>
<td>ACQUIRE PROCESS</td>
</tr>
<tr>
<td>1008</td>
<td>START</td>
<td>3410</td>
<td>ACQUIRE ACTIVITYID</td>
</tr>
<tr>
<td></td>
<td>START ATTACH</td>
<td>3412</td>
<td>DELETE CONTAINER</td>
</tr>
<tr>
<td>100A</td>
<td>RETRIEVE</td>
<td>3414</td>
<td>GET CONTAINER</td>
</tr>
<tr>
<td>100C</td>
<td>CANCEL</td>
<td>3416</td>
<td>PUT CONTAINER</td>
</tr>
<tr>
<td>1202</td>
<td>WAIT EVENT</td>
<td>3418</td>
<td>RESET ACTIVITY</td>
</tr>
<tr>
<td>1204</td>
<td>ENQ</td>
<td>341A</td>
<td>CHECK ACTIVITY</td>
</tr>
<tr>
<td>1206</td>
<td>DEQ</td>
<td>341C</td>
<td>CANCEL ACTIVITY</td>
</tr>
<tr>
<td>1208</td>
<td>SUSPEND</td>
<td>341E</td>
<td>CANCEL ACQPROCESS</td>
</tr>
<tr>
<td>1402</td>
<td>WRITE JOURNALNUM</td>
<td>3420</td>
<td>SUSPEND ACTIVITY</td>
</tr>
<tr>
<td>1404</td>
<td>WAIT JOURNALNUM</td>
<td>3422</td>
<td>SUSPEND ACQPROCESS</td>
</tr>
<tr>
<td>1406</td>
<td>WRITE JOURNALNAME</td>
<td>3424</td>
<td>RESUME ACTIVITY</td>
</tr>
<tr>
<td>1408</td>
<td>WAIT JOURNALNAME</td>
<td>3426</td>
<td>RESUME ACQPROCESS</td>
</tr>
<tr>
<td>1602</td>
<td>SYNCPOINT</td>
<td>3428</td>
<td>DELETE ACTIVITY</td>
</tr>
<tr>
<td>1802</td>
<td>RECEIVE MAP</td>
<td>342A</td>
<td>LINK ACQPROCESS</td>
</tr>
<tr>
<td>1804</td>
<td>SEND MAP</td>
<td>342C</td>
<td>LINK ACTIVITY</td>
</tr>
<tr>
<td>1806</td>
<td>SEND TEXT</td>
<td>342E</td>
<td>CANCEL ACQACTIVITY</td>
</tr>
<tr>
<td>1808</td>
<td>SEND PAGE</td>
<td>3430</td>
<td>RUN ACQACTIVITY</td>
</tr>
<tr>
<td>180A</td>
<td>PURGE MESSAGE</td>
<td>3432</td>
<td>LINK ACQACTIVITY</td>
</tr>
<tr>
<td>180C</td>
<td>ROUTE</td>
<td>3434</td>
<td>SUSPEND ACQACTIVITY</td>
</tr>
<tr>
<td>180E</td>
<td>RECEIVE PARTN</td>
<td>3436</td>
<td>RESUME ACQACTIVITY</td>
</tr>
<tr>
<td>1810</td>
<td>SEND PARTNSET</td>
<td>3438</td>
<td>CHECK ACQPROCESS</td>
</tr>
<tr>
<td>1812</td>
<td>SEND CONTROL</td>
<td>343A</td>
<td>CHECK ACQACTIVITY</td>
</tr>
<tr>
<td>1C02</td>
<td>DUMP</td>
<td>343C</td>
<td>RESET ACQPROCESS</td>
</tr>
<tr>
<td>1E02</td>
<td>ISSUE ADD</td>
<td>3602</td>
<td>DEFINE INPUT EVENT</td>
</tr>
<tr>
<td>1E04</td>
<td>ISSUE ERASE</td>
<td>3602</td>
<td>DEFINE COMPOSITE EVENT</td>
</tr>
<tr>
<td>1E06</td>
<td>ISSUE REPLACE</td>
<td>3604</td>
<td>DELETE EVENT</td>
</tr>
<tr>
<td>1E08</td>
<td>ISSUE ABORT</td>
<td>3608</td>
<td>ADD SUBEVENT</td>
</tr>
<tr>
<td>1E0A</td>
<td>ISSUE QUERY</td>
<td>360A</td>
<td>REMOVE SUBEVENT</td>
</tr>
<tr>
<td>1E0C</td>
<td>ISSUE END</td>
<td>360E</td>
<td>TEST EVENT</td>
</tr>
<tr>
<td>1E0E</td>
<td>ISSUE RECEIVE</td>
<td>3610</td>
<td>RETRIEVE REATTACH EVENT</td>
</tr>
<tr>
<td>1E10</td>
<td>ISSUE NOTE</td>
<td>3612</td>
<td>RETRIEVE SUBEVENT</td>
</tr>
<tr>
<td>1E12</td>
<td>ISSUE WAIT</td>
<td>3614</td>
<td>DEFINE TIMER</td>
</tr>
<tr>
<td>1E14</td>
<td>ISSUE SEND</td>
<td>3616</td>
<td>DELETE TIMER</td>
</tr>
<tr>
<td>2002</td>
<td>BIF DEEDIT</td>
<td>3618</td>
<td>CHECK TIMER</td>
</tr>
<tr>
<td>2004</td>
<td>DEFINE COUNTER</td>
<td>361A</td>
<td>FORCE TIMER</td>
</tr>
<tr>
<td>2006</td>
<td>GET COUNTER</td>
<td>3802</td>
<td>WEB RECEIVE</td>
</tr>
<tr>
<td>2008</td>
<td>UPDATE COUNTER</td>
<td>3804</td>
<td>WEB SEND</td>
</tr>
<tr>
<td>20A</td>
<td>DELETE COUNTER</td>
<td>3806</td>
<td>WEB READ</td>
</tr>
<tr>
<td>200C</td>
<td>REWIND COUNTER</td>
<td>3808</td>
<td>WEB STARTBROWSE</td>
</tr>
<tr>
<td>200E</td>
<td>QUERY COUNTER</td>
<td>380A</td>
<td>WEB READNEXT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>380C</td>
<td>WEB ENDBROWSE HTTPHEADER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>380E</td>
<td>WEB WRITE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3810</td>
<td>WEB EXTRACT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3814</td>
<td>WEB RETRIEVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3C02</td>
<td>DOCUMENT CREATE</td>
</tr>
</tbody>
</table>
EIBFREE indicates that the application program cannot continue using the facility. The application program should either free the facility or should terminate so that the facility is freed by CICS (X'FF').

```
COBOL: PIC X(1).
C: unsigned char eibfree;
PL/I: CHAR(1)
ASM: CL1
```

EIBNODAT indicates that no data has been sent by the remote application (X'FF'). A message has been received from the remote system that conveyed only control information. For example, if the remote application executed a SEND command with the WAIT option, any data would be sent across the link. If the remote application then executed a SEND INVITE command without using the FROM option to transmit data at the same time, it would be necessary to send the INVITE instruction across the link by itself. In this case, the receiving application finds EIBNODAT set. The use of this field is restricted to application programs holding conversations across APPC links only.

```
COBOL: PIC X(1).
C: unsigned char eibnodat;
PL/I: CHAR(1)
ASM: CL1
```

EIBRCODE contains the CICS response code returned after the function requested by the last CICS command to be issued by the task has been completed.

Note: For new commands where EIBRESP and EIBRESP2 are the strategic means of interrogating the resulting condition of an executed command, byte 3 of EIBRCODE has the same value as EIBRESP. Any further information is in EIBRESP2 rather than EIBRCODE. For a normal response, this field contains hexadecimal zeros (6'00').

Almost all of the information in this field can be used within application programs by the HANDLE CONDITION command.

```
COBOL: PIC X(6).
C: char eibrcode[6];
PL/I: CHAR(6)
ASM: CL6
```

The following list contains the values of the bytes together with the names of the conditions associated with the return codes.

See the notes at the end of the list of values for explanations of the numbers following some of the conditions.

<table>
<thead>
<tr>
<th>EIBFN</th>
<th>EIBRCODE</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>E0</td>
<td>INVREQ</td>
</tr>
<tr>
<td>04</td>
<td>04</td>
<td>EOF</td>
</tr>
<tr>
<td>04</td>
<td>10</td>
<td>EODS</td>
</tr>
<tr>
<td>04</td>
<td>C1</td>
<td>EOF</td>
</tr>
<tr>
<td>04</td>
<td>C2</td>
<td>ENDINPT</td>
</tr>
<tr>
<td>04</td>
<td>D0</td>
<td>SYSIDERR (see note 1)</td>
</tr>
<tr>
<td>04</td>
<td>D2</td>
<td>SESSIONERR (see note 2)</td>
</tr>
<tr>
<td>04</td>
<td>D3</td>
<td>SYSBUSY (see note 3)</td>
</tr>
<tr>
<td>04</td>
<td>D4</td>
<td>SESSBUSY</td>
</tr>
<tr>
<td>04</td>
<td>D5</td>
<td>NOTALLOC</td>
</tr>
<tr>
<td>04</td>
<td>E0</td>
<td>INVREQ (see note 4)</td>
</tr>
<tr>
<td>04</td>
<td>E1</td>
<td>LENGERR (see note 5)</td>
</tr>
<tr>
<td>04</td>
<td>E3</td>
<td>WRBRK</td>
</tr>
<tr>
<td>04</td>
<td>E4</td>
<td>RDATT</td>
</tr>
<tr>
<td>04</td>
<td>E5</td>
<td>SIGNAL</td>
</tr>
<tr>
<td>04</td>
<td>E6</td>
<td>TERMIDERR</td>
</tr>
<tr>
<td>04</td>
<td>E7</td>
<td>NOPASSBKRD</td>
</tr>
<tr>
<td>04</td>
<td>E8</td>
<td>NOPASSBKWR</td>
</tr>
<tr>
<td>04</td>
<td>EA</td>
<td>IREGQCD</td>
</tr>
<tr>
<td>EIBFN</td>
<td>EIBRCODE</td>
<td>Condition</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>04...</td>
<td>EB ...</td>
<td>CBIDERR</td>
</tr>
<tr>
<td>04...</td>
<td>EC ...</td>
<td>PARTNERIDERR</td>
</tr>
<tr>
<td>04...</td>
<td>ED ...</td>
<td>NETNAMEIDERR</td>
</tr>
<tr>
<td>04...</td>
<td>F1 ...</td>
<td>TERMERR</td>
</tr>
<tr>
<td>04...</td>
<td>... 20 ...</td>
<td>EOC</td>
</tr>
<tr>
<td>04...</td>
<td>... 40 ...</td>
<td>INBFMH</td>
</tr>
<tr>
<td>04...</td>
<td>... F6 ...</td>
<td>NOSTART</td>
</tr>
<tr>
<td>04...</td>
<td>... F7 ...</td>
<td>NONVAL</td>
</tr>
<tr>
<td>06...</td>
<td>01 ...</td>
<td>FILENOTFOUND</td>
</tr>
<tr>
<td>06...</td>
<td>02 ...</td>
<td>ILLOGIC (see note 6)</td>
</tr>
<tr>
<td>06...</td>
<td>03 ...</td>
<td>LOCKED</td>
</tr>
<tr>
<td>06...</td>
<td>05 ...</td>
<td>RECORDBUSY</td>
</tr>
<tr>
<td>06...</td>
<td>08 ...</td>
<td>INVREQ</td>
</tr>
<tr>
<td>06...</td>
<td>0C ...</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>06...</td>
<td>0D ...</td>
<td>DISABLED</td>
</tr>
<tr>
<td>06...</td>
<td>0F ...</td>
<td>ENDFILE</td>
</tr>
<tr>
<td>06...</td>
<td>80 ...</td>
<td>IOERR (see note 6)</td>
</tr>
<tr>
<td>06...</td>
<td>81 ...</td>
<td>NOTFND</td>
</tr>
<tr>
<td>06...</td>
<td>82 ...</td>
<td>DUPREC</td>
</tr>
<tr>
<td>06...</td>
<td>83 ...</td>
<td>NOSPACE</td>
</tr>
<tr>
<td>06...</td>
<td>84 ...</td>
<td>DUPKEY</td>
</tr>
<tr>
<td>06...</td>
<td>85 ...</td>
<td>SUPPRESSED</td>
</tr>
<tr>
<td>06...</td>
<td>D0 ...</td>
<td>SYSIDERR (see note 1)</td>
</tr>
<tr>
<td>06...</td>
<td>D1 ...</td>
<td>ISCINVREQ</td>
</tr>
<tr>
<td>06...</td>
<td>D6 ...</td>
<td>NOTAUTH</td>
</tr>
<tr>
<td>06...</td>
<td>E1 ...</td>
<td>LENGER</td>
</tr>
<tr>
<td>06...</td>
<td>01 ...</td>
<td>QZERO</td>
</tr>
<tr>
<td>06...</td>
<td>02 ...</td>
<td>QIDERR</td>
</tr>
<tr>
<td>06...</td>
<td>04 ...</td>
<td>IOERR</td>
</tr>
<tr>
<td>06...</td>
<td>08 ...</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>06...</td>
<td>10 ...</td>
<td>NOSPACE</td>
</tr>
<tr>
<td>06...</td>
<td>C0 ...</td>
<td>QBUSY</td>
</tr>
<tr>
<td>06...</td>
<td>D0 ...</td>
<td>SYSIDERR (see note 1)</td>
</tr>
<tr>
<td>06...</td>
<td>D1 ...</td>
<td>ISCINVREQ</td>
</tr>
<tr>
<td>06...</td>
<td>D6 ...</td>
<td>NOTAUTH</td>
</tr>
<tr>
<td>06...</td>
<td>D7 ...</td>
<td>DISABLED</td>
</tr>
<tr>
<td>06...</td>
<td>E0 ...</td>
<td>INVREQ</td>
</tr>
<tr>
<td>06...</td>
<td>E1 ...</td>
<td>LENGER</td>
</tr>
<tr>
<td>08...</td>
<td>01 ...</td>
<td>ITEMERR</td>
</tr>
<tr>
<td>08...</td>
<td>02 ...</td>
<td>QIDERR</td>
</tr>
<tr>
<td>08...</td>
<td>04 ...</td>
<td>IOERR</td>
</tr>
<tr>
<td>08...</td>
<td>08 ...</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>08...</td>
<td>10 ...</td>
<td>NOSPACE</td>
</tr>
<tr>
<td>08...</td>
<td>C0 ...</td>
<td>QBUSY</td>
</tr>
<tr>
<td>08...</td>
<td>D0 ...</td>
<td>SYSIDERR (see note 1)</td>
</tr>
<tr>
<td>08...</td>
<td>D1 ...</td>
<td>ISCINVREQ</td>
</tr>
<tr>
<td>08...</td>
<td>D6 ...</td>
<td>NOTAUTH</td>
</tr>
<tr>
<td>08...</td>
<td>E0 ...</td>
<td>INVREQ</td>
</tr>
<tr>
<td>08...</td>
<td>E1 ...</td>
<td>LENGER</td>
</tr>
<tr>
<td>0A...</td>
<td>01 ...</td>
<td>ITEMERR</td>
</tr>
<tr>
<td>0A...</td>
<td>02 ...</td>
<td>QIDERR</td>
</tr>
<tr>
<td>0A...</td>
<td>04 ...</td>
<td>IOERR</td>
</tr>
<tr>
<td>0A...</td>
<td>08 ...</td>
<td>NOSPACE</td>
</tr>
<tr>
<td>0A...</td>
<td>20 ...</td>
<td>INVREQ</td>
</tr>
<tr>
<td>0A...</td>
<td>D0 ...</td>
<td>SYSIDERR (see note 1)</td>
</tr>
<tr>
<td>0A...</td>
<td>D1 ...</td>
<td>ISCINVREQ</td>
</tr>
<tr>
<td>0A...</td>
<td>D6 ...</td>
<td>NOTAUTH</td>
</tr>
<tr>
<td>0A...</td>
<td>E1 ...</td>
<td>LENGER</td>
</tr>
<tr>
<td>0A...</td>
<td>E1 ...</td>
<td>LENGER</td>
</tr>
<tr>
<td>0C...</td>
<td>E1 ...</td>
<td>LENGER</td>
</tr>
<tr>
<td>0C...</td>
<td>E2 ...</td>
<td>NOSTG</td>
</tr>
<tr>
<td>0E...</td>
<td>01 ...</td>
<td>PGMIDERR</td>
</tr>
<tr>
<td>0E...</td>
<td>D6 ...</td>
<td>NOTAUTH</td>
</tr>
<tr>
<td>0E...</td>
<td>E0 ...</td>
<td>INVREQ</td>
</tr>
<tr>
<td>0E...</td>
<td>E1 ...</td>
<td>LENGER</td>
</tr>
<tr>
<td>0E...</td>
<td>F1 ...</td>
<td>TERMERR</td>
</tr>
<tr>
<td>10...</td>
<td>01 ...</td>
<td>ENDDATA</td>
</tr>
<tr>
<td>10...</td>
<td>04 ...</td>
<td>IOERR</td>
</tr>
<tr>
<td>10...</td>
<td>11 ...</td>
<td>TRANSIDERR</td>
</tr>
<tr>
<td>10...</td>
<td>12 ...</td>
<td>TERMIDERR</td>
</tr>
<tr>
<td>10...</td>
<td>20 ...</td>
<td>EXPIRED</td>
</tr>
</tbody>
</table>
Notes:

1. When SYSIDERR occurs, further information is provided in bytes 1 and 2 of EIBRCODE, as follows:

<table>
<thead>
<tr>
<th>EIBFN</th>
<th>EIBRCODE</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>56..</td>
<td>.. 50..</td>
<td>NOSPOOL</td>
</tr>
<tr>
<td>56..</td>
<td>.. 55..</td>
<td>ALLOCERR</td>
</tr>
<tr>
<td>56..</td>
<td>.. 56..</td>
<td>STRELERR</td>
</tr>
<tr>
<td>56..</td>
<td>.. 57..</td>
<td>OPENERR</td>
</tr>
<tr>
<td>56..</td>
<td>.. 58..</td>
<td>SPOOLBUSY</td>
</tr>
<tr>
<td>56..</td>
<td>.. 59..</td>
<td>SPOOLERR</td>
</tr>
<tr>
<td>56..</td>
<td>.. 5A..</td>
<td>NODEIDERR</td>
</tr>
</tbody>
</table>

2. When SESSIONERR occurs, further information is provided in bytes 1 and 2 of EIBRCODE, as follows:

<table>
<thead>
<tr>
<th>EIBFN</th>
<th>EIBRCODE</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>56..</td>
<td>.. 50..</td>
<td>session out of service</td>
</tr>
<tr>
<td>56..</td>
<td>0C xx..</td>
<td>session definition error</td>
</tr>
<tr>
<td>56..</td>
<td>0C 00..</td>
<td>name not found</td>
</tr>
<tr>
<td>56..</td>
<td>0C 0C..</td>
<td>profile not found</td>
</tr>
</tbody>
</table>

Further information about SYSIDERR can be found in the *CICS Intercommunication Guide*.

3. If SYSBUSY occurs on an ALLOCATE command that attempts to acquire a session to an APPC terminal or system, byte 3 of the EIBRCODE indicates where the error condition was detected:

<table>
<thead>
<tr>
<th>EIBFN</th>
<th>EIBRCODE</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>08..</td>
<td>.. 00..</td>
<td>the request was for a session to a connected terminal or system.</td>
</tr>
<tr>
<td>08..</td>
<td>01..</td>
<td>the request was for a session to a remotely connected terminal or system, and the error occurred in the terminal-owning region (TOR) or an intermediate system.</td>
</tr>
<tr>
<td>08..</td>
<td>02..</td>
<td>the request was for a session to a remotely connected terminal or system, and the error occurred in the application-owning region (AOR).</td>
</tr>
</tbody>
</table>

Further information about SESSIONERR can be found in the *CICS Intercommunication Guide*.

4. When INVREQ occurs during terminal control operations, further information is provided in bytes 1 or 3 of EIBRCODE as follows:

<table>
<thead>
<tr>
<th>EIBFN</th>
<th>EIBRCODE</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0C xx</td>
<td>00..</td>
<td>sysid definition error</td>
</tr>
<tr>
<td>0C 00</td>
<td>04..</td>
<td>name not that of TCTSE</td>
</tr>
<tr>
<td>0C 04</td>
<td>08..</td>
<td>mode name not found</td>
</tr>
<tr>
<td>0C 0C</td>
<td>0C..</td>
<td>profile not found</td>
</tr>
</tbody>
</table>

Further information about SYSBUSY can be found in the *CICS Intercommunication Guide*.

4 For APPC only.
5. When LENGERR occurs during terminal control operations, further information is provided in byte 1 of EIBRCODE, as follows:

- 00 ... input data is overlong and has been truncated.
- 04 ... on output commands, an incorrect (FROM)LENGTH has been specified, either less than zero or greater than 32 767.
- 08 ... on input commands, an incorrect (TO)LENGTH has been specified, greater than 32 767.
- 0C ... length error has occurred on ISSUE PASS command.

Note: This field is not used exclusively for the above and may take other values.

6. When ILLOGIC or IOERR occurs during file control operations, further information is provided in field EIBRCODE, as follows:

- xx xx xx ... BDAM response.
- xx ... VSAM return code.
- xx ... VSAM error code.

where:

- byte 3 = VSAM problem determination code (ILLOGIC only)
- byte 4 = VSAM component code (ILLOGIC only)

Details of these response codes are given in the DFSMS Macro Instructions for Data Sets manual for VSAM, and the DFSMS/MVS V1.3 Using Data Sets (SC26-4922) for BDAM.

7. When INVMPSZ occurs during BMS operations, byte 3 of field EIBRCODE contains the terminal code:

.. .. xx ... terminal code.

These are the same as the mapset suffixes shown in Table 27 on page 447.

8. Codes 82nn and 84nn are used by the CICS Front End Programming Interface. See the CICS Front End Programming Interface User's Guide for a description.

EIBRECV indicates that the application program is to continue receiving data from the facility by executing RECEIVE commands (X'FF').

EIBREQID contains the request identifier assigned to an interval control command by CICS; this field is not used when a request identifier is specified in the application program.

EIBRESP contains a number corresponding to the RESP condition that occurred. These numbers are listed below (in decimal) for the conditions that can occur during execution of the commands described in this manual.

<table>
<thead>
<tr>
<th>No.</th>
<th>Condition</th>
<th>No.</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>NORMAL</td>
<td>55</td>
<td>ENQBUSY</td>
</tr>
<tr>
<td>01</td>
<td>ERROR</td>
<td>56</td>
<td>ENVDEFERR</td>
</tr>
<tr>
<td>02</td>
<td>RDATT</td>
<td>57</td>
<td>IGREQCD</td>
</tr>
</tbody>
</table>

Appendix A. EXEC interface block 393
EIBRESP2 contains more detailed information that may help explain why the RESP condition occurred. This field contains meaningful values, as documented with each command to which it applies. For requests to remote files, EIBRESP2 contains zeros.

For programs written in C, any value passed via the exit or return function is saved in EIBRESP2.

EIBSIG indicates that SIGNAL has been received (X'FF').
EIBSYNC indicates that the application program must take a syncpoint or terminate. Before either is done, the application program must ensure that any other facilities, owned by it, are put into the send state, or are freed (X’FF’).

EIBSYNRB indicates that the application program should issue a SYNCPOINT ROLLBACK command (X’FF’). This field is only set in application programs holding a conversation on an APPC or MRO link.

EIBTASKN contains the task number assigned to the task by CICS. This number appears in trace table entries generated while the task is in control. The format of the field is packed decimal.

EIBTIME contains the time at which the task is started (this field is updated by the ASKTIME command). The time is in packed decimal form (0HHMMSS+).

EIBTRMID contains the symbolic transaction identifier of the task.
Appendix B. Codes returned by ASSIGN

This appendix describes the codes returned by the ASSIGN command.

ASSIGN TERM Code

This section gives the meanings of the terminal type codes in the first byte of the data area returned by the TERM CODE option of the ASSIGN command.

The codes are derived from the DEVICE attribute of the RDO TYPETERM resource definition. The second byte of the data area contains a model number in character form, as set by the TERMMODEL attribute of the TYPETERM resource definition. TYPETERM is described in the CICS Resource Definition Guide.

The codes are listed here as both bit patterns and hexadecimal values.

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>... ... 1</td>
<td>X'01'</td>
</tr>
<tr>
<td>... ... 1</td>
<td>X'02'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'08'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'12'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'14'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'18'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'19'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'1A'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'20'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'21'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'22'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'24'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'28'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'2A'</td>
</tr>
<tr>
<td>... 1 ... 11</td>
<td>X'2B'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'40'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'41'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'45'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'4A'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'4C'</td>
</tr>
<tr>
<td>... 1 ... 11</td>
<td>X'50'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'80'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'82'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'84'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'85'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'86'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'88'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'89'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'8A'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'91'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'92'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'93'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'94'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'99'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'B9'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'9C'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'A0'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'A1'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'A4'</td>
</tr>
<tr>
<td>... 1 ...</td>
<td>X'A6'</td>
</tr>
</tbody>
</table>

Note: An ASSIGN TERM CODE for an ISC session returns a X'C0' for LUTYPE 6. An INQUIRE CONNECTION then determines whether this ISC connection is using LUTYPE 6.1 or APPC protocols.

ASSIGN FCI

This section gives the meanings of the facility control indicator codes in the data area returned by the FCI option of the ASSIGN command.

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>... ... 1</td>
<td>X'01'</td>
</tr>
<tr>
<td>... ... 1</td>
<td>X'02'</td>
</tr>
<tr>
<td>... ... 1</td>
<td>X'04'</td>
</tr>
<tr>
<td>... ... 1</td>
<td>X'08'</td>
</tr>
<tr>
<td>... ... 1</td>
<td>X'10'</td>
</tr>
<tr>
<td>... ... 1</td>
<td>X'E0'</td>
</tr>
</tbody>
</table>

Note: X'D3' is not used.
Appendix C. Translated code for CICS commands

Application programs can be written in COBOL, C, PL/I, or assembler language, and contain CICS commands. CICS translates these programs and creates an equivalent source program where each command is now translated into a call macro or statement in the language of the original source program.

COBOL

For a COBOL application program, each command is replaced by one or more MOVE statements followed by a COBOL CALL statement.

The purpose of the MOVE statements is to assign constants to COBOL data variables; this enables constants and names to be specified as arguments to options in the commands. For example, a command such as:

```cobol
EXEC CICS RECEIVE MAP('A') END-EXEC.
```

may be translated to:

```cobol
MOVE ' ' TO DFHEIV/zerodot.
MOVE 'A' TO DFHC/zerodot/zerodot7/zerodot.
CALL 'DFHEI1' USING DFHEIV/zerodot DFHC/zerodot/zerodot7/zerodot AI.
```

Declarations for the generated variables DFHEIV0 and DFHC0070 are included automatically in the working-storage section; their names are reserved. The string within the quotation marks moved to DFHEIV0 consists of characters some of which may be unprintable. Do not use EXEC, CICS, DLI, END-EXEC, or names starting with DFH, as names for user variables.

The translator modifies the linkage section by inserting the EIB structure as the first parameter, and inserts declarations of the temporary variables that it requires into the working-storage section. It also inserts a DFHCOMMAREA if the first item in the linkage section is not a DFHCOMMAREA.

Use of ‘modern’ COBOL CALL syntax

For COBOL3, the ‘by content’ and ‘by reference’ phrases are used and each generated call is terminated by ‘end-call’.

For example, the following EXEC statement:

```cobol
EXEC CICS RETURN TRANSID('fred') COMMAREA(mycommarea) END-EXEC.
```

is currently translated to:

```cobol
MOVE ' \\
00027 ' TO DFHEIV0
MOVE 'fred' TO DFHC0040
MOVE LENGTH OF mycommarea TO DFHB0020
CALL 'DFHEI1' USING DFHEIV0 DFHC0040 mycommarea DFHB0020.
```

For COBOL3, it is translated as:

```cobol
Move length of mycommarea to dfhb0020
Call 'DFHEI1' using by content
\x'0e08e000700001000f0f0f2f7404040' by content 'fred' by reference mycommarea by reference dfhb0020 end-call.
```

Note that argument zero is passed ‘by content’ as a hexadecimal literal.

Copybook DFHEIBLC

This new copybook is a lower case version of the existing DFHEIBLK copybook.

A difference is that in DFHEIBLK the top level name is

```pli
01 EIBLK.
```

whereas in DFHEIBLC the top level name is

```pli
01 dfheiblk.
```

This is consistent with the name generated by the translator today, and also conforms to the rule that CICS reserved words should start with DFH.

C

For a C application program, each command is replaced by reassignment statements followed by a dfhexec statement that passes the parameters.

PL/I

For a PL/I application program, each command is always replaced by a DO statement, a declaration of a generated entry name, a CALL statement, and an END statement. The ENTRY declaration ensures that the appropriate conversions for argument values take place.

If a PL/I on-unit consists of a single EXEC CICS command, the command should be inside a BEGIN block, for example:
Translated code

```
ON ERROR BEGIN;
  EXEC CICS RETURN;
END;
```

In a similar way, if an EXEC CICS command is associated with a PL/I condition prefix, the command should be inside a BEGIN block, for example:

```
(NOZERODIVIDE): BEGIN;
  EXEC CICS GETMAIN
    SET(ptr-ref)
    LENGTH(data-value);
END;
```

If OPTIONS(MAIN) is specified, the translator modifies the parameter list by inserting the EIB structure pointer as the first parameter. If OPTIONS(MAIN) is not specified (that is, if the program is to be link-edited to the main module), the parameter list is not modified, and it is the application programmer’s responsibility to address the EIB structure in the link-edited program if access to it is required. In either case, where a program commences with a valid PL/I PROCEDURE statement, the translator inserts the declaration of the EIB structure.

Assembler language

The invocation of a CICS assembler-language application program obeys system standards, which means that on entry to the application program, registers 1, 15, 14, and 13 contain the following:

- Register 1 contains the address of the parameter list; there are at least two entries in this list, as follows:
 - Address of the EIB (EXEC interface block)
 - Address of the COMMAREA; if no COMMAREA, entry is X’00000000’
- Register 15 contains the address of the entry point
- Register 14 contains the address of the return point
- Register 13 contains the address of the save area.

All other registers are undefined.

DFHECALL macro

For an assembler-language application program, each command is replaced by an invocation of the DFHECALL macro.

This macro expands to a system-standard call sequence using registers 15, 14, 0, and 1, whose contents are:

- Register 15 contains the address of the entry point in the EXEC interface program.
- Register 14 contains the address of the return point in your application program.
- Register 0 is undefined.
- Register 1 contains the address of the parameter list.

The entry point held in register 15 is resolved in the EXEC interface processor (DFHEAI) that must be link-edited with your application program.

You can specify the exit from the application program by an EXEC CICS RETURN command in your source program. Alternatively, you can let the translator-inserted macro DFHEIRET, which has been inserted before the END statement, do it. This macro only restores the registers and returns control to the address in register 14. Note that this can be used to return from a top-level program but is not advisable from a lower-level program.

During assembly, the DFHECALL macro builds an argument list in dynamic storage, so that the application program is reentrant, and then invokes the EXEC interface program (DFHEIP). DFHEIP also obeys system standards, as described above.

In addition to the invocation of the DFHECALL macro, the translator also inserts the following macros into your source program:

DFHEIGBL

This macro sets globals if you are using EXEC DLI in either a batch or an online CICS application program. Within DFHEIGBL, if DFHEIDL is set to 1, this means that the program contains EXEC DLI commands. If DFHEIDB is set to 1, this means that the program is batch DL/I. If you are not using DL/I, it is commented and set to 0.

DFHEIENT

This macro is inserted after the first CSECT or START instruction. It performs prolog code; that is, it:

- Saves registers
- Gets an initial allocation of the storage defined by DFHEISTG
- Sets up a base register (default register 3)
- Sets up a dynamic storage register (default register 13)
- Sets up a register to address the EIB (default register 11)

DFHEIRET

This macro performs epilog code; that is, it:

- Restores registers
- DFHEIRET RCREG=nn, where nn (any register number other than 13) contains the return code to be placed in register 15 after the registers are restored.
- Returns control to the address in register 14
DFHEISTG and DFHEIEND

These macros define dynamic storage; that is, they:

- Define the storage required for the parameter list
- Define a save area.

A copybook, DFHEIBLK, containing a DSECT that describes the EIB, is also included automatically.

Note that the program must have an END statement because the translator does not otherwise insert the default macros.

The example in Figure 7 shows a simple assembler-language application program that uses the BMS command SEND MAP to send a map to a terminal. The lower part of the figure shows the output after program INSTRUCT has been translated.

Extensions to dynamic storage

You can extend dynamic storage to provide extra storage for user variables.

You do this by defining these variables in your source program in a DSECT called DFHEISTG. The maximum amount of dynamic storage obtainable using the DFHEISTG DSECT is 65,264 bytes. (Note that DFHEISTG is a reserved name.) This storage is initialized to 00. At translation, the translator inserts the DFHEISTG macro immediately following your DFHEISTG DSECT instruction. In this way the DSECT describes dynamic storage needed for the parameter list, for the command-level interface, and for any user variables.

The example in Figure 8 shows a simple assembler-language application program that uses such variables in dynamic storage.

Multiple base registers

The values provided by the automatic insertion of DFHEIENT may be inadequate for application programs that produce a translated output greater than 4095 bytes.

For example, the translator by default only sets up one base register (register 3), or, when the DLI translator option has been specified, the literals produced by the translator initializing the DIB could fall outside the range of that single base register.

To overcome this problem, you can prevent the translator from automatically inserting its version of the DFHEIENT macro by specifying the translator option NOPROLOG. This enables you to provide your own DFHEIENT macro with the CODEREG operand so that you can specify more than one base register. You must code your own version of the DFHEIENT macro, which can have up to three operands, in place of the first CSECT or START instruction in your source program. The three operands are as follows:

- CODEREG - base registers.
- DATAREG - dynamic-storage registers.
- EIBREG - register to address the EIB.
Translated code

For example, the source code shown in Figure 7 would become:

```
INSTRUCT DFHEIENT CODEREG=(2,3,4),
               DATAREG=(13,5),
               EIBREG=6
EXEC CICS SEND
MAP('DFH$AGA')
MAPONLY ERASE
END
```

The symbolic register DFHEIPLR is equated to the first DATAREG either explicitly specified or obtained by default. It is recommended that, because register 13 points to the save area defined in dynamic storage by DFHEISTG, you use register 13 as the first dynamic-storage register.

DFHEIPLR is assumed by the expansion of a CICS command to contain the value set up by DFHEIENT. You should either dedicate this register or ensure that it is restored before each CICS command.

Assembler-language programs, translated with the DLI option, have a DLI initialization call inserted after each CSECT statement. Assembler-language programs larger than 4095 bytes, that do not use the CODEREG operand of the DFHEIENT macro to establish multiple base registers, must include an LTORG statement to ensure that the literals, generated by either DFHEIENT or a DLI initialization call, fall within the range of the base register.

Note that, in general, an LTORG statement is needed for every CSECT that exceeds 4095 bytes in length.
Appendix D. Terminal control

This appendix contains general information that applies to all terminals and logical units. For more detail, see the command descriptions.

Commands and options for terminals and logical units

This section describes the commands and options that apply to terminals and logical units.

Fullword lengths

For all terminal control commands, fullword length options can be used instead of halfword length options. In particular, where the following options are used in CONVERSE, RECEIVE, or SEND, the corresponding alternative can be specified instead (except for those noted):

<table>
<thead>
<tr>
<th>Option</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td>FLENGTH</td>
</tr>
<tr>
<td>TOLENGTH</td>
<td>TOFLENGTH</td>
</tr>
<tr>
<td>FROMLENGTH</td>
<td>FROMFLENGTH</td>
</tr>
<tr>
<td>MAXLENGTH</td>
<td>MAXFLENGTH</td>
</tr>
</tbody>
</table>

Application programs should be consistent in their use of fullword and halfword options on terminal control commands. The maximum value that can be specified as a parameter on any length keyword is 32767. See the CICS Application Programming Guide for more information.

Read from terminal or logical unit (RECEIVE)

The RECEIVE command is used to read data from a terminal or logical unit. The INTO option is used to specify the area into which the data is to be placed. Alternatively, a pointer reference can be specified in the SET option. CICS acquires an area large enough to hold the data and sets the pointer reference to the address of that data.

The contents of this area are available to the task until the next terminal I/O command. However, the area does not belong to the task and is released by CICS while processing the next request. Therefore, this area cannot be passed back to CICS for further processing.

The application can use MAXLENGTH to specify the maximum length of data that the program accepts. If the MAXLENGTH option is omitted on a RECEIVE command for which the SET option is specified, CICS acquires enough storage to hold all the available data.

If the data exceeds the specified maximum length and the NOTRUNCATE option is specified, the remaining data is made available to satisfy subsequent RECEIVE commands. If NOTRUNCATE is not specified, the data is truncated and the LENGERR condition occurs. In this event, if the LENGTH option is specified, the named data area is set to the actual data length (before truncation occurs) when data has been received. The first RECEIVE command in a task started by a terminal does not issue a terminal control read but simply copies the input buffer, even if the data length is zero. A second RECEIVE command must be issued to cause a terminal control read.

When a PA key is defined as a print key by the system initialization parameter PRINT, and that key is pressed in response to a RECEIVE command, it has no effect on the application program. The RECEIVE command is satisfied, and the application allowed to continue, when another attention (that is, one of the other PA keys, any of the PF keys, the ENTER key, or the light pen) is made at the keyboard.

Write to terminal or logical unit (SEND)

The SEND command is used to write data to a terminal or logical unit. The options FROM and LENGTH specify respectively the data area from which the data is to be taken and the length (in bytes) of the data. For a transaction started by automatic transaction initiation (ATI), a SEND command should always precede the first RECEIVE in a transaction.

WAIT option of SEND command: Unless the WAIT option is specified also, the transmission of the data associated with the SEND command is deferred until a later event, such as a syncpoint, occurs. This deferred transmission reduces the flows of data by allowing data-flow controls to be transmitted with the data.

Transmission is not deferred for distributed transaction processing when interregion communication (IRC) is in use.

Synchronize terminal I/O for a transaction (WAIT TERMINAL)

This command is used to ensure that a terminal operation has completed before further processing occurs in a task under which more than one terminal or logical unit operation is performed. Alternatively, the WAIT option can be specified in a SEND command. (A wait is always carried out for a RECEIVE command.) Either method may cause execution of a task to be suspended. If suspension is necessary, control
Terminal control

is returned to CICS. Execution of the task is resumed when the operation is completed.

Even if the WAIT option is not specified in a SEND command, the EXEC interface program ensures that the operation is completed before issuing a subsequent RECEIVE or SEND command.

Converse with terminal or logical unit (CONVERSE)

For most terminals or logical unit types, a conversational mode of communication can be used. The CONVERSE command is used for this purpose and means that the 3650 application program communicates with the host processor. If this option is not specified, the 3650 application program cannot communicate with the host processor. In general, the CONVERSE command can be considered as a combination of a SEND command followed immediately by a WAIT TERMINAL command and then by a RECEIVE command. However, not all options of the SEND and RECEIVE commands are valid for the CONVERSE command; specific rules are given in the syntax descriptions for different devices. The TOLENGTH option is equivalent to the LENGTH option of the RECEIVE command, and the FROMLENGTH option is equivalent to the LENGTH option of the SEND command.

Send an asynchronous interrupt (ISSUE SIGNAL)

This command is used, in a transaction in receive mode, to signal to the sending transaction that a mode change is needed. The execution of the command raises the SIGNAL condition on the next SEND or RECEIVE command executed in the sending transaction, and a previously executed HANDLE CONDITION command for this condition can be used either to action the request or to ignore it.

Disconnect a switched line (ISSUE DISCONNECT)

This command is used to break a line connection between a terminal and the processor, or to break a session between TCAM or VTAM logical units, when the transaction is completed. If the terminal is a buffered device, the data in the buffers is lost.

When used with a VTAM terminal, ISSUE DISCONNECT, which does not become effective until the task completes, signs off the terminal, frees the COMMAREA, clears the next TRANID, stops any BMS paging, and, if autoinstall is in effect, deletes the terminal definition.

TCAM-supported terminals and logical units

Because TCAM permits many applications to share a single network, the CICS-TCAM interface supports data streams rather than specific terminals or logical units.

Operations for terminals supported by TCAM use the same options as the terminals supported by other access methods. With the exception of the BUFFER option for the 3270, all options applicable for input operations are supported by CICS-TCAM. However, the conditions ENDINPT and EOF do not occur.

All output requests are the same for TCAM as for other CICS-supported terminals, except that:

- The ISSUE RESET command cannot be used
- The ISSUE COPY and ISSUE PRINT commands for the 3270 cannot be used
- The DEST option is available on CONVERSE and SEND commands, in addition to other appropriate options.

With the exception of 3650 logical units, operations for logical units supported by TCAM use the same options as logical units supported by VTAM.

BTAM programmable terminals

CICS Transaction Server for OS/390 Release 3 does not support local BTAM terminals. However, it does support transaction routing from BTAM terminals attached to a remote system.

When BTAM is used by CICS for programmable binary synchronous telecommunication line management, CICS initializes the telecommunication line with a BTAM communication line management; CICS initializes the communication read initial (TI); the terminal response must be a write initial (TI) or the equivalent. If an application program makes an input request, CICS issues a read continue (TT) to that line; if the application program makes an output request, CICS issues a read interrupt (RVI) to that line. If end of transmission (EOT) is not received on the RVI, CICS issues a read continue (TT) until the EOT is received.

When TCAM is used, all of this line control is handled by the message control facility rather than by CICS.

The programmable terminal response to a read interrupt must be "end of transmission" (EOT). The EOT response may, however, be preceded by writes, in order to exhaust the contents of output buffers (if the input buffer size is not exceeded by this data). The input buffer size is specified by the system programmer during preparation of the TCT. CICS issues a read continue until it receives an EOT, or until the input message is greater than the input buffer (an error condition).
After receiving an EOT, CICS issues a write initial (TI) or the equivalent (depending on the type of line). The programmable terminal response must be a read initial (TI) or the equivalent.

If the application program makes another output request, CICS issues a write continue (TT) to that line. If the application program makes an input request after it has made an output request, CICS turns the line around with a write reset (TR). (CICS does not recognize a read interrupt.)

To ensure that binary synchronous terminals (for example, System/370, 1130, 2780) remain coordinated, CICS processes the data collection or data transmission transaction on any line to completion, before polling other terminals on that line.

The programmable terminal actions required for the above activity, with the corresponding user application program commands and CICS actions, are summarized in Table 15.

<table>
<thead>
<tr>
<th>User Application Program Command</th>
<th>CICS Actions</th>
<th>Programmable Terminal Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECEIVE</td>
<td>Read initial (TI)</td>
<td>Write initial (TI)</td>
</tr>
<tr>
<td></td>
<td>Read continue (TT)</td>
<td>Write continue (TT)</td>
</tr>
<tr>
<td>SEND</td>
<td>Read interrupt (RVI)²</td>
<td>Write reset (TR) or Write continue</td>
</tr>
<tr>
<td></td>
<td>Read continue (TT)³</td>
<td>Write reset</td>
</tr>
<tr>
<td></td>
<td>Write initial (TI)</td>
<td>Read initial (TI)</td>
</tr>
<tr>
<td>SEND</td>
<td>Write continue (TT)</td>
<td>Read continue (TT)</td>
</tr>
<tr>
<td>RECEIVE</td>
<td>Write reset (TR)⁴</td>
<td>Read continue (TT)</td>
</tr>
<tr>
<td></td>
<td>Read initial (TI)</td>
<td>Write initial (TI)</td>
</tr>
</tbody>
</table>

1. CICS issues the macro shown, or, if the line is switched, the equivalent. The user-written programmable terminal program must issue the equivalent of the BTAM operation shown.
2. An RVI sequence is indicated by the DECFLAGS field of the data event control block (DECB) being set to X'02' and a completion code of X'7F' being returned to the event control block (ECB).
3. The read continue is issued only if the EOT character is not received on the read interrupt.
4. Write reset is issued only for point-to-point terminals.

Automatically initiated transactions attached to a device cause the message:

DFH2503 AUTO OUTPUT HAS BEEN REQ,
PLEASE PREPARE TO RECEIVE

to be sent to the device, which must be prepared to receive it.

Input data is deblocked to ETX, ETB, RS, and US characters. These characters are moved with the data but are not included in the data length. Characters such as NL (new line), CR (carriage return), LF (line feed), and EM (end of message) are included as data in a CICS application program.

Teletypewriter programming

The Teletypewriter (World Trade only) uses two different control characters for print formatting, as follows:

- `< carriage return (X'22' in ITA2 code or X'15' in EBCDIC)
- ` line feed (X'28' in ITA2 code or X'25' in EBCDIC)

The character `< should always be used first; otherwise following characters (data) may be printed while the type bar is moving to the left.

Message format

Message begin: To start a message on a new line at the left margin, the message text must begin with X'1517' (EBCDIC). CICS recognizes the X'17' and changes it to X'25' (X'17' is an IDLE character).

Message body: To write several lines with a single transmission, the lines must be separated by X'1525', or if multiple blank lines are required, by X'152525...25'.

Message end before next input: To allow input of the next message on a new line at the left margin, the preceding message must end with X'1517'. CICS recognizes X'15' and changes the character following it to X'25'.

Message end before next output: In the case of two or more successive output messages, the “message begin” and the “message end” look the same; that is X'1517', except for the last message (see above). To make the “message end” of the preceding message distinguishable from the “message begin” of the next message, the next to last character of the “message end” must not be X'15'.

Message length

Messages for teletypewriter terminals should not exceed a length of about 3000 bytes or approximately 300 words.
Terminal control

Connection through VTAM

Both the TWX Model 33/35 Common Carrier Teletypewriter Exchange and the WTTY Teletypewriter (World Trade only) can be connected to CICS through BTAM, or through VTAM using NTO.

If a device is connected through VTAM using NTO, the protocols used are the same as for the 3767 logical unit, and the application program can make use of these protocols (for example, HANDLE CONDITION SIGNAL). However, the data stream is not translated to a 3767 data stream but remains as that for a TWX/WTTY.

Display device operations

In addition to the standard terminal control commands for sending and receiving data, several commands and lists are provided for use with display devices such as the 3270.

The commands are:
- Print displayed information (ISSUE PRINT)
- Copy displayed information (ISSUE COPY)
- Erase all unprotected fields (ISSUE ERASEAUP)
- Handle input without data (RECEIVE)
- Handle attention identifiers (HANDLE AID)

The lists are:
- Standard attention identifier list (DFHAI)
- Standard attribute and printer control character list (DFHBMSCA)

For devices with switchable screen sizes, the size of the screen that can be used, and the size to be used for a given transaction, are defined by CICS table generation. These values can be obtained by means of the ASSIGN command, described in “ASSIGN” on page 23.

The ERASE option should always be included in the first SEND command, to clear the screen and format it according to the transmitted data. This first SEND with ERASE also selects the screen size to be used, as specified using the RDO option SCRNSIZE, or in the TCT. If ERASE is omitted, the screen size is the same as its previous setting, which may be incorrect.

Use the CLEAR key outside of a transaction to set the screen to its default size.

Print displayed information (ISSUE PRINT)

ISSUE PRINT prints displayed data on the first available printer that is eligible to respond to a print request.

For a 3270 display logical unit with the printer adapter feature (PRINTADAPTER(YES) option on RDO TYPETERM), used with a 3274 or 3276, it is a printer allocated by the printer authorization matrix. See An Introduction to the IBM 370 Information Display System.

For a 3790 (3270-display) logical unit, it is a printer allocated by the 3790.

For a printer to be available, it must be in service and not currently attached to a task.

For a 3270 logical unit to be eligible, it must have been specified by RDO TERMINAL options PRINTER and ALTPRINTER or by a printer supplied by the autoinstall user program, and it must have the correct buffer capacity. If the copy feature is also specified (COPY(YES) on RDO TYPETERM definition the printer must be on the same control unit.

If an ISSUE PRINT command is executed, the printer involved must be owned by the same CICS system that owns the terminal that is running the transaction.

For some 3270 displays, it is possible also to print the displayed information without using CICS. See An Introduction to the IBM 3270 Information Display System manual.

Copy displayed information (ISSUE COPY)

The ISSUE COPY command is used to copy the format and data contained in the buffer of a specified terminal into the buffer of the terminal that started the transaction. This command cannot be used for an LUTYPE2 connection. Both terminals must be attached to the same remote control unit. The terminal whose buffer is to be copied is identified in the TERMD option. If the terminal identifier is not valid, that is, it does not exist in the TCT, then the TERMDERR condition occurs. The copy function to be performed is defined by the copy control character (CCC) specified in the CTLCHAR option of the ISSUE COPY command.

The WAIT option of the ISSUE COPY command ensures that the operation has been completed before control is returned to the application program.

Erase all unprotected fields (ISSUE ERASEAUP)

The ISSUE ERASEAUP command is used to erase all unprotected fields of a 3270 buffer, by the following actions:

1. All unprotected fields are cleared to nulls (X'00').
2. The modified data tags (MDTs) in each unprotected field are reset to zero.
3. The cursor is positioned to the first unprotected field.
4. The keyboard is restored.
The WAIT option of the ISSUE ERASEAUP command ensures that the operation has been completed before control is returned to the application program.

Handle input without data (RECEIVE)

The RECEIVE command with no options causes input to take place and the EIB to be updated. However, data received by CICS is not passed on to the application program and is lost. A wait is implied. Two of the fields in the EIB that are updated are described below.

Cursor position (EIBCPOSN): For every terminal control (or BMS) input operation associated with a display device, the screen cursor address (position) is placed in the EIBCPOSN field in the EIB. The cursor address is in the form of a halfword binary value and remains until updated by a new input operation.

Attention identifier (EIBAID): For every terminal control (or BMS) input operation associated with a display device, an attention identifier (AID) is placed in field EIBAID in the EIB. The AID indicates which method the terminal operator has used to initiate the transfer of information from the device to CICS; for example, the ENTER key, a program function key, the light pen, and so on. The field contents remain unaltered until updated by a new input operation.

Field EIBAID can be tested after each terminal control (or BMS) input operation to determine further processing, and a standard attention identifier list (DFHAID) is provided for this purpose. Alternatively, the HANDLE AID command can be used to pass control to specified labels when the AIDs are received.

EIBAID and EIBCPOSN are also updated at task initiation for non-ATI tasks and after each terminal control and BMS input.
Terminal control
Appendix E. SAA Resource Recovery

SAA Resource Recovery is the recovery element of the Systems Application Architecture (SAA) Common Programming Interface (CPI).

SAA Resource Recovery provides that architecture’s alternative application programming interface (API) to EXEC CICS SYMCPPOINT and EXEC CICS SYMCPPOINT ROLLBACK functions in CICS. (See the SAA Common Programming Interface-Resource Recovery Reference, SC31-6821, for more details.)

CICS supports only those SAA Resource Recovery return codes that match existing EXEC CICS commands. This leaves only two return codes: RR_OK and RR_BACKED_OUT.

SRRCMT

Commit call (equivalent to EXEC CICS SYMCPPOINT). The return codes are:

- RR_OK
- RR_COMMITTED_OUTCOME_PENDING
- RR_COMMITTED_OUTCOME_MIXED
- RR_PROGRAM_STATE_CHECK
- RR_BACKED_OUT
- RR_BACKED_OUT_OUTCOME_PENDING
- RR_BACKED_OUT_OUTCOME_MIXED

Because of the restriction, these are replaced by:

- RR_COMMITTED_OUTCOME_PENDING, RR_OK
- RR_COMMITTED_OUTCOME_MIXED, RR_OK
- RR_PROGRAM_STATE_CHECK, shown as abend code ASP2
- RR_BACKED_OUT_OUTCOME_PENDING, RR_BACKED_OUT
- RR_BACKED_OUT_OUTCOME_MIXED, RR_BACKED_OUT

SRRBACK

Backout call (equivalent to EXEC CICS SYMCPPOINT ROLLBACK). The return codes are:

- RR_OK
- RR_COMMITTED_OUTCOME_PENDING
- RR_COMMITTED_OUTCOME_MIXED

Because of the restriction, all these are replaced by RR_OK.
SAA resource recovery
Appendix F. Common Programming Interface Communications (CPI Communications)

Common Programming Interface Communications (CPI Communications) is the communication element of the Systems Applications Architecture (SAA) Common Programming Interface (CPI).

CPI Communications in CICS provides an alternative application programming interface (API) to existing CICS Advanced Program-to-Program Communications (APPC) support. CPI Communications provides distributed transaction processing (DTP) on APPC sessions and can be used in assembler language, COBOL, PL/I, or C.

CPI Communications defines an API that can be used in APPC networks that include multiple system platforms, where the consistency of a common API is seen to be of benefit.

The CPI Communications interface can converse with applications on any system that provides an APPC API. This includes applications on CICS platforms. You may use APPC API commands on one end of a conversation and CPI Communications commands on the other. CPI Communications requires specific information (side information) to begin a conversation with a partner program. CICS implementation of side information is achieved using the partner resource which your system programmer is responsible for maintaining.

The application’s calls to the CPI Communications interface are resolved by link-editing it with the CICS CPI Communications link-edit stub (DFHCPLC). You can find further guidance information in the *CICS System Definition Guide*.

CPI Communications language interfaces

The CPI Communications API is defined as a general call interface. The interface is described in the *SAA Common Programming Interface Communications Reference* manual.
Appendix G. API restrictions for distributed program link

This appendix lists the API commands, indicating whether or not they are supported in a program running in a resource region in response to a distributed program link command.

Summary of the restricted API commands

Table 16. Restricted API commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS</td>
<td></td>
</tr>
<tr>
<td>ALLOCATE</td>
<td></td>
</tr>
<tr>
<td>ASSIGN</td>
<td></td>
</tr>
<tr>
<td>CONNECT PROCESS</td>
<td></td>
</tr>
<tr>
<td>CONVERSE</td>
<td></td>
</tr>
<tr>
<td>EXTRACT PROCESS</td>
<td></td>
</tr>
<tr>
<td>FREE CONVID</td>
<td></td>
</tr>
<tr>
<td>HANDLE AID</td>
<td></td>
</tr>
<tr>
<td>ISSUE</td>
<td></td>
</tr>
<tr>
<td>PURGE MESSAGE</td>
<td></td>
</tr>
<tr>
<td>RECEIVE</td>
<td></td>
</tr>
<tr>
<td>ROUTE</td>
<td></td>
</tr>
<tr>
<td>SEND</td>
<td></td>
</tr>
<tr>
<td>SIGNOFF</td>
<td></td>
</tr>
<tr>
<td>SIGNON</td>
<td></td>
</tr>
<tr>
<td>WAIT TERMINAL</td>
<td></td>
</tr>
</tbody>
</table>

List of API commands

The following table summarizes the CICS API commands by functional area, indicating whether or not they are supported in a program invoked by a distributed program link command. Generally, if the program issues a command that is not supported, CICS returns an INVREQ condition, with a RESP2 value of 200.

Table 17 (Page 1 of 4). Summary of the CICS API by functional area

<table>
<thead>
<tr>
<th>Functional area</th>
<th>Command</th>
<th>Supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abend support</td>
<td>ABEND</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>ASSIGN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABCODE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASRAINTRPT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASRAPSM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASRAREGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORGABCODE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HANDLE ABEND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALLOCATE(APPC)</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>CONNECT PROCESS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONVERSE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXTRACT PROCESS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FREE CONVID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISSUE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABEND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFIRMATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERROR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PREPARE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIGNAL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RECEIVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WAIT CONVID</td>
<td></td>
</tr>
</tbody>
</table>

Note: The above APPC commands are restricted only when they refer to the principal facility.

Signon

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGNON</td>
<td>NO</td>
</tr>
<tr>
<td>SIGNOFF</td>
<td></td>
</tr>
</tbody>
</table>

Batch data interchange commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSUE</td>
<td>NO</td>
</tr>
<tr>
<td>ABORT</td>
<td></td>
</tr>
<tr>
<td>QUERY</td>
<td></td>
</tr>
<tr>
<td>ADD</td>
<td></td>
</tr>
<tr>
<td>RECEIVE</td>
<td></td>
</tr>
<tr>
<td>END</td>
<td></td>
</tr>
<tr>
<td>REPLACE</td>
<td></td>
</tr>
<tr>
<td>ERASE</td>
<td></td>
</tr>
<tr>
<td>SEND</td>
<td></td>
</tr>
<tr>
<td>NOTE</td>
<td></td>
</tr>
<tr>
<td>WALT</td>
<td></td>
</tr>
</tbody>
</table>
Table 17 (Page 2 of 4). Summary of the CICS API by functional area

<table>
<thead>
<tr>
<th>Functional area</th>
<th>Command</th>
<th>Supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMS commands</td>
<td>ASSIGN</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>COLOR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DESTCOUNT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INPARTN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LDCMNM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LDCNUM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAPCOLUMN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAPHEIGHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAPLINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAPWIDTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPCLASS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PURGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MESSAGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RECEIVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROUTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONTROL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PARTNSET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEXT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEXT MAPPED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEXT NOEDIT</td>
<td></td>
</tr>
<tr>
<td>Built-in functions</td>
<td>BIF DEEDIT</td>
<td>YES</td>
</tr>
<tr>
<td>Condition handling</td>
<td>HANDLE CONDITION</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>IGNORE CONDITION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUSH HANDLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POP HANDLE</td>
<td></td>
</tr>
<tr>
<td>Console support</td>
<td>WRITE OPERATOR</td>
<td>YES</td>
</tr>
<tr>
<td>Diagnostic services</td>
<td>DUMP</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>ENTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRACE</td>
<td></td>
</tr>
<tr>
<td>Environmental services</td>
<td>ASSIGN</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>ABCODE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABDUMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABPROGRAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPLID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASRAINTRPT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASRAKEY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASRAPSW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASRASPC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASRASPCL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMDSEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CWALENG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INITPARM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INITPARMLENG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INVOKEINGPROG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NETNAME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPERKEYS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPRID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORGABCODE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRINSYSID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROGRAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RESEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RETURNPROG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TASKPRIORITY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCTUALENG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANPRORITY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TMALEN9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USERID</td>
<td></td>
</tr>
</tbody>
</table>
Table 17 (Page 3 of 4). Summary of the CICS API by functional area

<table>
<thead>
<tr>
<th>Functional area</th>
<th>Command</th>
<th>Supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental services (continued)</td>
<td>ASSIGN, ALTSCRNHT, ALTSCRNMD, APLKBBD, APLTEXT, BTRANS, COLOR, DEFSCRNHT, DEFSCRNMD, DEFTECL, DELIMITER, DESTCOUNT, DESTID, DESTIDLENG, DSSCS, DS3270, EMASSUPP, EXTDS, FACILITY, FCI, GCHARS, GCODES, GMMI, HILIGHT, INPARTN, KATAKANA, LANGINUSE, LANGTEXT, LDCMNEM, LDCNUM, MAPCOLUMN, MAPHEIGHT, NO</td>
<td>NO</td>
</tr>
<tr>
<td>Environmental services (continued)</td>
<td>ADDRESS, ACEE, COMMAREA, CMA, EIB, TCTUA, TMA</td>
<td>YES</td>
</tr>
<tr>
<td>File control</td>
<td>DELETE, ENDBR, READ, READNEXT, READPREV, RESETBR, REWRITE, STARTBR, UNLOCK, WRITE</td>
<td>YES</td>
</tr>
<tr>
<td>Interval control</td>
<td>ASKTIME, CANCEL, DELAY, FORMATTTIME, POST, RETRIEVE, START, WAIT EVENT</td>
<td>YES</td>
</tr>
<tr>
<td>Journaling</td>
<td>WRITE JOURNALNAME, WAIT JOURNALNAME, WRITE JOURNALNUM, WAIT JOURNALNUM</td>
<td>YES</td>
</tr>
<tr>
<td>Monitoring</td>
<td>MONITOR POINT</td>
<td>YES</td>
</tr>
</tbody>
</table>
API restrictions

Table 17 (Page 4 of 4). Summary of the CICS API by functional area

<table>
<thead>
<tr>
<th>Functional area</th>
<th>Command</th>
<th>Supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program control</td>
<td>LINK</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>LOAD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RELEASE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RETURN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XCTL</td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>LINK, RETURN and XCTL do not support INPUTMSG.</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td>QUERY SECURITY</td>
<td>YES</td>
</tr>
<tr>
<td>Storage control</td>
<td>FREEMAIN</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>GETMAIN</td>
<td></td>
</tr>
<tr>
<td>Syncpoint</td>
<td>SYNCPOINT</td>
<td>YES</td>
</tr>
<tr>
<td>Task control</td>
<td>ASSIGN TASKPRIORITY</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>CHANGE TASK DEQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUSPEND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WAIT EXTERNAL</td>
<td></td>
</tr>
<tr>
<td>Temporary storage</td>
<td>DELETEQ TS</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>READQ TS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WRITEQ TS</td>
<td></td>
</tr>
<tr>
<td>Terminal control</td>
<td>ASSIGN FACILITY</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>CONVERSE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HANDLE AID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RECEIVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WAIT TERMINAL</td>
<td></td>
</tr>
<tr>
<td>Transient data</td>
<td>DELETEQ TD</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>READQ TD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WRITEQ TD</td>
<td></td>
</tr>
</tbody>
</table>
Appendix H. CVDA numeric values

This appendix lists the CVDA values and their numeric equivalents for the relevant EXEC CICS commands in this book.

| Table 18. CVDAs and numeric values in alphabetic sequence |
|-------------|-------------|
| cvda | value |
| ALLOCATED | 81 |
| ALTERABLE | 52 |
| BASESPACE | 664 |
| CICSEXECKEY | 381 |
| CONFFREE | 82 |
| CONFRECEIVE | 83 |
| CONFSEND | 84 |
| CRITICAL | 11 |
| CTRLABLE | 56 |
| EVENTUAL | 3 |
| FREE | 85 |
| IMMEDIATE | 2 |
| LOG | 54 |
| UOW | 246 |
| NOLOG | 55 |
| NONCICS | 661 |
| NOTALTERABLE| 53 |
| NOTAPPLIC | 1 |
| NOTCTRLABLE | 57 |
| NOTPURGEABLE| 161 |
| NOTREADABLE | 36 |
| NOTUPDATABLE| 38 |
| PENDFREE | 86 |
| PENDRECEIVE | 87 |
| PURGEABLE | 160 |
| READABLE | 35 |
| RECEIVE | 88 |
| ROLLBACK | 89 |
| SEND | 90 |
| SUBSPACE | 663 |
| SYNCFREE | 91 |
| SYNCRECEIVE | 92 |
| SYNCSEND | 93 |
| TASK | 233 |
| UPDATABLE | 37 |
| USEREXECKEY | 382 |

| Table 19. CVDAs and numeric values in numeric sequence |
|-------------|-------------|
| value | cvda |
| 1 | NOTAPPLIC |
| 2 | IMMEDIATE |
| 3 | EVENTUAL |
| 11 | CRITICAL |
| 35 | READABLE |
| 36 | NOTREADABLE |
| 37 | UPDATABLE |
| 38 | NOTUPDATABLE|
| 52 | ALTERABLE |
| 53 | NOTALTERABLE|
| 54 | LOG |
| 55 | NOLOG |
| 56 | CTRLABLE |
| 57 | NOTCTRLABLE |
| 81 | ALLOCATED |
| 82 | CONFFREE |
| 83 | CONFRECEIVE |
| 84 | CONFSEND |
| 85 | FREE |
| 86 | PENDFREE |
| 87 | PENDRECEIVE |
| 88 | RECEIVE |
| 89 | ROLLBACK |
| 90 | SEND |
| 91 | SYNCFREE |
| 92 | SYNCRECEIVE |
| 93 | SYNCSEND |
| 160 | PURGEABLE |
| 161 | NOTPURGEABLE|
| 233 | TASK |
| 246 | UOW |
| 381 | CICSEXECKEY |
| 382 | USEREXECKEY |
| 661 | NONCICS |
| 663 | SUBSPACE |
| 664 | BASESPACE |
Appendix I. National language codes

Language codes are held as one character for NATLANG and NATLANGINUSE, and three characters for LANGUAGECODE and LANGINUSE.

There are other IBM codes not supported by CICS.

Table 21. Other IBM language codes

<table>
<thead>
<tr>
<th>IBM Code</th>
<th>Language name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFR</td>
<td>Afrikaans</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalan</td>
</tr>
<tr>
<td>DES</td>
<td>Swiss German</td>
</tr>
<tr>
<td>ENA</td>
<td>Australian English</td>
</tr>
<tr>
<td>ENP</td>
<td>English Upper Case</td>
</tr>
<tr>
<td>FRB</td>
<td>Belgian French</td>
</tr>
<tr>
<td>FRC</td>
<td>Canadian French</td>
</tr>
<tr>
<td>FRS</td>
<td>Swiss French</td>
</tr>
<tr>
<td>GAE</td>
<td>Irish Gaelic</td>
</tr>
<tr>
<td>ITS</td>
<td>Swiss Italian</td>
</tr>
<tr>
<td>NLB</td>
<td>Belgian Dutch - Flemish</td>
</tr>
<tr>
<td>NON</td>
<td>Norwegian - Nynorsk</td>
</tr>
<tr>
<td>RMS</td>
<td>Rhaeto-Romanic</td>
</tr>
<tr>
<td>SKY</td>
<td>Slovakian</td>
</tr>
<tr>
<td>SLO</td>
<td>Slovenian</td>
</tr>
<tr>
<td>SRL</td>
<td>Serbian (Latin)</td>
</tr>
<tr>
<td>SRB</td>
<td>Serbian (Cyrillic)</td>
</tr>
<tr>
<td>SQI</td>
<td>Albanian</td>
</tr>
<tr>
<td>URD</td>
<td>Urdu</td>
</tr>
</tbody>
</table>

Table 20. CICS language suffixes

<table>
<thead>
<tr>
<th>Suffix</th>
<th>IBM Code</th>
<th>Language name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ENG</td>
<td>UK English</td>
</tr>
<tr>
<td>B</td>
<td>PTB</td>
<td>Brazilian Portuguese</td>
</tr>
<tr>
<td>C</td>
<td>CHS</td>
<td>Simplified Chinese</td>
</tr>
<tr>
<td>D</td>
<td>DAN</td>
<td>Danish</td>
</tr>
<tr>
<td>E</td>
<td>ENU</td>
<td>US English</td>
</tr>
<tr>
<td>F</td>
<td>FRA</td>
<td>French</td>
</tr>
<tr>
<td>G</td>
<td>DEU</td>
<td>German</td>
</tr>
<tr>
<td>H</td>
<td>KOR</td>
<td>Korean</td>
</tr>
<tr>
<td>I</td>
<td>ITA</td>
<td>Italian</td>
</tr>
<tr>
<td>J</td>
<td>ISL</td>
<td>Icelandic</td>
</tr>
<tr>
<td>K</td>
<td>JPN</td>
<td>Japanese</td>
</tr>
<tr>
<td>L</td>
<td>BGR</td>
<td>Bulgarian</td>
</tr>
<tr>
<td>M</td>
<td>MKD</td>
<td>Macedonian</td>
</tr>
<tr>
<td>N</td>
<td>NOR</td>
<td>Norwegian</td>
</tr>
<tr>
<td>O</td>
<td>ELL</td>
<td>Greek</td>
</tr>
<tr>
<td>P</td>
<td>PTG</td>
<td>Portuguese</td>
</tr>
<tr>
<td>Q</td>
<td>ARA</td>
<td>Arabic</td>
</tr>
<tr>
<td>R</td>
<td>RUS</td>
<td>Russian</td>
</tr>
<tr>
<td>S</td>
<td>ESP</td>
<td>Spanish</td>
</tr>
<tr>
<td>T</td>
<td>CHT</td>
<td>Traditional Chinese</td>
</tr>
<tr>
<td>U</td>
<td>UKR</td>
<td>Ukrainian</td>
</tr>
<tr>
<td>V</td>
<td>SVE</td>
<td>Swedish</td>
</tr>
<tr>
<td>W</td>
<td>FIN</td>
<td>Finnish</td>
</tr>
<tr>
<td>X</td>
<td>HEB</td>
<td>Hebrew</td>
</tr>
<tr>
<td>Y</td>
<td>SHC</td>
<td>Serbo-Croatian (Cyrillic)</td>
</tr>
<tr>
<td>Z</td>
<td>THA</td>
<td>Thai</td>
</tr>
<tr>
<td>1</td>
<td>BEL</td>
<td>Byelorussian</td>
</tr>
<tr>
<td>2</td>
<td>CSY</td>
<td>Czech</td>
</tr>
<tr>
<td>3</td>
<td>HRV</td>
<td>Croatian</td>
</tr>
<tr>
<td>4</td>
<td>HUN</td>
<td>Hungarian</td>
</tr>
<tr>
<td>5</td>
<td>PLK</td>
<td>Polish</td>
</tr>
<tr>
<td>6</td>
<td>ROM</td>
<td>Romanian</td>
</tr>
<tr>
<td>7</td>
<td>SHL</td>
<td>Serbo-Croatian (Latin)</td>
</tr>
<tr>
<td>8</td>
<td>TRK</td>
<td>Turkish</td>
</tr>
<tr>
<td>9</td>
<td>NLD</td>
<td>Dutch</td>
</tr>
</tbody>
</table>
Appendix J. BMS-related constants

This appendix contains the BMS-related standard attribute and printer control characters, a bit map for attributes, MSR control value constants, and attention identifier constants.

The standard list DFHBMSCA makes it simpler to provide field attributes and printer control characters. Table 22 lists the symbolic names for the various combinations of attributes and control characters. If you need combinations other than the ones shown, you must generate them separately. To help you do this, see Table 23 on page 423 for a bit map of attributes. To find the value of an attribute constant, see the 3274 Control Unit Reference Summary.

You can get the standard attribute and printer character control list by copying copybook DFHBMSCA into your application.

- For COBOL users, it consists of a set of 01 statements that can be copied into the working storage section.
- For C users, it is included in applications as follows:

```c
#include "dfhbmsca.h"
```

- For PL/I users, it consists of DECLARE statements defining elementary character variables.
- For assembler-language users, the list consists of a set of EQU statements.

You must use the symbolic name DFHDFT in the application structure to override a map attribute with the default. You can use a high value, such as X'FF', to reset the COLOR, HILIGHT, OUTLINE, PS, SOSI, or VALIDN attributes to their default values.

On the other hand, to specify default values in a set attribute (SA) sequence in text build, you should use the symbolic names DFHDFCOL, DFHBASE, or DFHDFHI.

<table>
<thead>
<tr>
<th>Constant</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHBMPem</td>
<td>Printer end-of-message</td>
</tr>
<tr>
<td>DFHBMPNL</td>
<td>Printer new-line</td>
</tr>
<tr>
<td>DFHBMPFF</td>
<td>Printer form feed</td>
</tr>
<tr>
<td>DFHBMPCR</td>
<td>Printer carriage return</td>
</tr>
<tr>
<td>DFHBMAK</td>
<td>Autoskip</td>
</tr>
<tr>
<td>DFHBMPUNP</td>
<td>Unprotected</td>
</tr>
<tr>
<td>DFHBMPUNN</td>
<td>Unprotected and numeric</td>
</tr>
<tr>
<td>DFHBMPRO</td>
<td>Protected</td>
</tr>
<tr>
<td>DFHBMBRY</td>
<td>Bright</td>
</tr>
<tr>
<td>DFHBMDAR</td>
<td>Dark</td>
</tr>
<tr>
<td>DFHBMFSE</td>
<td>MDT set</td>
</tr>
<tr>
<td>DFHBMPRF</td>
<td>Protected and MDT set</td>
</tr>
<tr>
<td>DFHBMASF</td>
<td>Autoskip and MDT set</td>
</tr>
<tr>
<td>DFHBMSB</td>
<td>Autoskip and bright</td>
</tr>
<tr>
<td>DFHBMPSO</td>
<td>shift-out value X'0E'.</td>
</tr>
<tr>
<td>DFHBMPSI</td>
<td>shift-in value X'0F'.</td>
</tr>
<tr>
<td>DFHBMEOF</td>
<td>Field erased</td>
</tr>
<tr>
<td>DFHBMCUR</td>
<td>Field containing cursor flagged</td>
</tr>
<tr>
<td>DFHBMEC</td>
<td>Erased field containing cursor (COBOL only)</td>
</tr>
<tr>
<td>DFHBMLGLG</td>
<td>Flags (COBOL only)</td>
</tr>
<tr>
<td>DFHBMDET</td>
<td>Field detected</td>
</tr>
<tr>
<td>DFHSA</td>
<td>Set attribute (SA) order</td>
</tr>
<tr>
<td>DFHERROR</td>
<td>Error code</td>
</tr>
<tr>
<td>DFHCOLOR</td>
<td>Color</td>
</tr>
<tr>
<td>DFHPSP</td>
<td>Programmed symbols</td>
</tr>
<tr>
<td>DFHHLT</td>
<td>Highlight</td>
</tr>
<tr>
<td>DFHS270</td>
<td>Base 3270 field attribute</td>
</tr>
<tr>
<td>DFHVAL</td>
<td>Validation</td>
</tr>
<tr>
<td>DFHOUTLN</td>
<td>Field outlining attribute code</td>
</tr>
<tr>
<td>DFHBKTWN</td>
<td>Background transparency attribute code</td>
</tr>
<tr>
<td>DFHALL</td>
<td>Reset all to defaults</td>
</tr>
<tr>
<td>DFHDFT</td>
<td>Default</td>
</tr>
<tr>
<td>DFHDFCOL</td>
<td>Default color</td>
</tr>
<tr>
<td>DFHBLUE</td>
<td>Blue</td>
</tr>
<tr>
<td>DFHRED</td>
<td>Red</td>
</tr>
<tr>
<td>DFHPINK</td>
<td>Pink</td>
</tr>
<tr>
<td>DFHGREEN</td>
<td>Green</td>
</tr>
<tr>
<td>DFHTURQ</td>
<td>Turquoise</td>
</tr>
<tr>
<td>DFHYELLO</td>
<td>Yellow</td>
</tr>
<tr>
<td>Constant</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>DFHNEUTR</td>
<td>Neutral</td>
</tr>
<tr>
<td>DFHBASE1</td>
<td>Base programmed symbols</td>
</tr>
<tr>
<td>DFHDFHI1</td>
<td>Normal</td>
</tr>
<tr>
<td>DFHBLINK</td>
<td>Blink</td>
</tr>
<tr>
<td>DFHREVRS</td>
<td>Reverse video</td>
</tr>
<tr>
<td>DFHUNDLN</td>
<td>Underscore</td>
</tr>
<tr>
<td>DFHMFIL2</td>
<td>Mandatory fill</td>
</tr>
<tr>
<td>DFHMENT2</td>
<td>Mandatory enter</td>
</tr>
<tr>
<td>DFHMFE</td>
<td>Mandatory fill and mandatory enter</td>
</tr>
<tr>
<td>DFHMT</td>
<td>Trigger</td>
</tr>
<tr>
<td>DFHMFT</td>
<td>Mandatory fill and trigger</td>
</tr>
<tr>
<td>DFHMET</td>
<td>Mandatory enter and trigger</td>
</tr>
<tr>
<td>DFHMFET</td>
<td>Mandatory fill and mandatory enter and trigger</td>
</tr>
<tr>
<td>DFHUNNOD</td>
<td>Unprotected, nondisplay, nonprint, nondetectable, MDT</td>
</tr>
<tr>
<td>DFHUNIMD</td>
<td>Unprotected, intensify, light-pen detectable, MDT</td>
</tr>
<tr>
<td>DFHUNNUM</td>
<td>Unprotected, numeric, MDT</td>
</tr>
<tr>
<td>DFHUNNUB</td>
<td>Unprotected, numeric, intensify, light-pen detectable</td>
</tr>
<tr>
<td>DFHUNINT</td>
<td>Unprotected, numeric, intensify, light-pen detectable, MDT</td>
</tr>
<tr>
<td>DFHUNNON</td>
<td>Unprotected, numeric, nondisplay, nonprint, nondetectable, MDT</td>
</tr>
<tr>
<td>DFHPROTI</td>
<td>Protected, intensify, light-pen detectable</td>
</tr>
<tr>
<td>DFHPROTN</td>
<td>Protected, nondisplay, nonprint, nondetectable</td>
</tr>
<tr>
<td>DFHDFFR</td>
<td>Default outline</td>
</tr>
<tr>
<td>DFHUNDER</td>
<td>Underline</td>
</tr>
<tr>
<td>DFHRIGHT</td>
<td>Right vertical line</td>
</tr>
<tr>
<td>DFHOVER</td>
<td>Overline</td>
</tr>
<tr>
<td>DFHLEFT</td>
<td>Left vertical line</td>
</tr>
<tr>
<td>DFHBOX</td>
<td>Underline and right vertical and underline and left vertical</td>
</tr>
<tr>
<td>DFHSOSI</td>
<td>SOSI=yes</td>
</tr>
<tr>
<td>DFHTRANS</td>
<td>Background transparency</td>
</tr>
<tr>
<td>DFHOPAQ</td>
<td>No background transparency</td>
</tr>
</tbody>
</table>

Notes:

1. For text processing only. Use for constructing embedded set attribute orders in user text.
2. Cannot be used in set attribute orders.
Table 23. Bit map for attributes

<table>
<thead>
<tr>
<th>prot</th>
<th>a/n</th>
<th>hi</th>
<th>spd</th>
<th>ndp</th>
<th>mdt</th>
<th>ebcd</th>
<th>asci</th>
<th>char</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td></td>
<td></td>
<td>40</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td>Y</td>
<td>C1</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>U</td>
<td>Y</td>
<td></td>
<td>C4</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>U</td>
<td>Y</td>
<td>Y</td>
<td>C5</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>U</td>
<td>H</td>
<td>Y</td>
<td>C8</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>U</td>
<td>H</td>
<td>Y</td>
<td>C9</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>U</td>
<td>Y</td>
<td></td>
<td>4C</td>
<td>3C</td>
<td></td>
<td></td>
<td></td>
<td><</td>
</tr>
<tr>
<td>U</td>
<td>Y</td>
<td>Y</td>
<td>4D</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td>(</td>
</tr>
<tr>
<td>U</td>
<td>N</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>U</td>
<td>N</td>
<td>Y</td>
<td>D1</td>
<td>4A</td>
<td></td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>U</td>
<td>N</td>
<td>Y</td>
<td>D4</td>
<td>4D</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>U</td>
<td>N</td>
<td>Y</td>
<td>D5</td>
<td>4E</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>U</td>
<td>H</td>
<td>Y</td>
<td>D8</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
</tr>
<tr>
<td>U</td>
<td>H</td>
<td>Y</td>
<td>D9</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>U</td>
<td>N</td>
<td>Y</td>
<td>5C</td>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>U</td>
<td>N</td>
<td>Y</td>
<td>5D</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td>)</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>Y</td>
<td>60</td>
<td>2D</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>Y</td>
<td>61</td>
<td>2F</td>
<td></td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>Y</td>
<td>E4</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td>U</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>Y</td>
<td>E5</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>P</td>
<td>H</td>
<td>Y</td>
<td>E8</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>P</td>
<td>H</td>
<td>Y</td>
<td>E9</td>
<td>5A</td>
<td></td>
<td></td>
<td></td>
<td>Z</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>Y</td>
<td>6C</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>Y</td>
<td>6D</td>
<td>5F</td>
<td></td>
<td></td>
<td></td>
<td>_</td>
</tr>
<tr>
<td>P</td>
<td>S</td>
<td></td>
<td>F0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>S</td>
<td>Y</td>
<td>F1</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>S</td>
<td>Y</td>
<td>F4</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>P</td>
<td>S</td>
<td>Y</td>
<td>F5</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>P</td>
<td>S</td>
<td>H</td>
<td>F8</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>P</td>
<td>S</td>
<td>H</td>
<td>F9</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>P</td>
<td>S</td>
<td>Y</td>
<td>7C</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>@</td>
</tr>
<tr>
<td>P</td>
<td>S</td>
<td>Y</td>
<td>7D</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td>'</td>
</tr>
</tbody>
</table>

The attributes in the headings are:

- **prot** = protected
- **a/n** = automatic skip or numeric
- **hi** = high intensity
- **spd** = selector pen detectable
- **ndp** = nondisplay print
- **mdt** = modified data tag
- **ebcd** = extended binary-coded decimal interchange code
- **asci** = American National Standard Code for Information Interchange
- **char** = graphic character equivalent to hex code

The hexadecimal codes in the headings are:

- **ebcd** = extended binary-coded decimal interchange code
- **asci** = American National Standard Code for Information Interchange
- **char** = graphic character equivalent to hex code

The characters in the body of the above table mean the following:

- H = High
- N = Numeric
- S = Automatic skip
- P = Protected
- U = Unprotected
- Y = Yes

Magnetic slot reader (MSR) control value constants, DFHMSRCA

A selection of MSR control value constants has been created for CICS and stored in copybook DFHMSRCA. The patterns are stored as named constants that can be loaded by simple application program commands. Provision of such constants saves the programmer from having to build a commonly used bit pattern whenever it is required.

MSR control byte values

A selection of MSR control byte values has been created for CICS and stored in the copybook DFHMSRCA. Table 24 on page 424 shows the meaning of each bit. The constants supplied in DFHMSRCA are listed in Table 25 on page 424.
Table 24. MSR control byte values

<table>
<thead>
<tr>
<th>Byte (purpose)</th>
<th>Bit</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (STATE MASK)</td>
<td>0</td>
<td>USER</td>
<td>User mode. Turn the yellow light on if the same bit is on in STATE VALUE.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>LOCK</td>
<td>Locked/Unlocked. If locked, MSR input is inhibited.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AUTO</td>
<td>Autoenter on/off. If set on, any card read by the MSR causes an ENTER operation. If off, only a secure card causes an ENTER.</td>
</tr>
<tr>
<td>2 (STATE VALUE)</td>
<td>3</td>
<td>Ai1S</td>
<td>SUPPRESS AUDIBLE ALARM 1.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Ai2S</td>
<td>SUPPRESS AUDIBLE ALARM 2.</td>
</tr>
<tr>
<td>3 (INDICATOR MASK)</td>
<td>0</td>
<td>LIGHT 1 (GREEN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>LIGHT 2 (YELLOW)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>LIGHT 3 (RED)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>AUDIBLE ALARM 1 (LONG BUZZ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>AUDIBLE ALARM 2 (SHORT BUZZ)</td>
<td></td>
</tr>
<tr>
<td>4 (INDICATOR VALUE)</td>
<td>0</td>
<td>LIGHT 1 (GREEN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>LIGHT 2 (YELLOW)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>LIGHT 3 (RED)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>AUDIBLE ALARM 1 (LONG BUZZ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>AUDIBLE ALARM 2 (SHORT BUZZ)</td>
<td></td>
</tr>
</tbody>
</table>

Table 25. Standard list DFHMSRCA

<table>
<thead>
<tr>
<th>Constant</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHMSRST</td>
<td>MSR reset. All lights and buzzers off, MSR available for input.</td>
</tr>
<tr>
<td>DFHMSCON</td>
<td>Transaction ready for more input. Green and yellow on; emit short buzz; IN PROCESS (user) mode set.</td>
</tr>
<tr>
<td>DFHMSFIN</td>
<td>Input complete. Green on; emit short buzz; IN PROCESS mode reset.</td>
</tr>
<tr>
<td>DFHMSALR</td>
<td>Operator alert. Green, yellow, and red on; emit long buzz; IN PROCESS mode reset.</td>
</tr>
<tr>
<td>DFHMSALS</td>
<td>Operator alert. Green, yellow, and red on; emit long buzz; IN PROCESS mode set.</td>
</tr>
<tr>
<td>DFHMSIPIY</td>
<td>IN PROCESS state set. Yellow on.</td>
</tr>
<tr>
<td>DFHMSIPN</td>
<td>IN PROCESS state reset.</td>
</tr>
<tr>
<td>DFHMSLKY</td>
<td>MSR operation inhibited. Yellow on.</td>
</tr>
<tr>
<td>DFHMSLKN</td>
<td>MSR input allowed. Green on. Yellow on.</td>
</tr>
<tr>
<td>DFHMSAEY</td>
<td>MSR autoenter on. Yellow on.</td>
</tr>
<tr>
<td>DFHMSAEN</td>
<td>MSR autoenter off. Yellow on.</td>
</tr>
<tr>
<td>DFHMSLBN</td>
<td>Long buzzer suppressed. Yellow on.</td>
</tr>
<tr>
<td>DFHMSLBY</td>
<td>Long buzzer permitted. Yellow on.</td>
</tr>
<tr>
<td>DFHMSSSBN</td>
<td>Short buzzer suppressed. Yellow on.</td>
</tr>
<tr>
<td>DFHMSSSBY</td>
<td>Short buzzer permitted. Yellow on.</td>
</tr>
<tr>
<td>DFHMSNOP</td>
<td>Leave all MSR settings unchanged.</td>
</tr>
</tbody>
</table>
Attention identifier constants, DFHAID

The standard attention identifier list, DFHAID, simplifies testing the contents of the EIBAID field. Table 26 shows the symbolic name for the attention identifier (AID) and the corresponding 3270 function.

You can get a copy of the list by copying DFHAID into your application program. For COBOL users, it consists of a set of 01 statements that must be copied into the working-storage section. For C users, it consists of a series of defined constants. For PL/I users, it consists of DECLARE statements defining elementary character variables.

<table>
<thead>
<tr>
<th>Constant</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHENTER</td>
<td>ENTER key.</td>
</tr>
<tr>
<td>DFHCLEAR</td>
<td>CLEAR key.</td>
</tr>
<tr>
<td>DFHPA1–DFHPA3</td>
<td>PA1–PA3 keys.</td>
</tr>
<tr>
<td>DFHPF1–DFHPF24</td>
<td>PF1–PF24 keys.</td>
</tr>
<tr>
<td>DFHOPID</td>
<td>OPERID or MSR.</td>
</tr>
<tr>
<td>DFHMSRE</td>
<td>Extended (standard) MSR.</td>
</tr>
<tr>
<td>DFHTRIG</td>
<td>Trigger field.</td>
</tr>
<tr>
<td>DFHPEN</td>
<td>SELECTOR PEN or CURSOR SELECT key.</td>
</tr>
<tr>
<td>DFHCLRP</td>
<td>CLEAR PARTITION key.</td>
</tr>
<tr>
<td>DFHSTRF</td>
<td>Structured field pseudo-AID.</td>
</tr>
</tbody>
</table>

Note: DFHCLRP and DFHSTRF do not apply to minimum function BMS.
Appendix K. BMS macro summary

This appendix contains the syntax of each BMS macro, separating the various operands and options into those appropriate to minimum, standard, and full BMS.

When coding, you should have the title in column 1, the macro in column 10, continuation lines should have * in column 72 and continue on column 16 on the next line.

For more information about BMS, see the CICS Application Programming Guide.

Mapset, map, and field definition

You should ensure that the names of maps, and names of fields within a mapset (or within multiple mapsets that are copied into one application program) are unique. Maps and mapsets must not have the same name.

You assemble a BMS mapset definition to generate either a symbolic description map or a physical map. The physical map is a structured data area used at execution time to build the data stream for the terminal. The symbolic map is a series of data structures which you copy into your program at compile time so you can refer to the fields in the map by name.

Before CICS can load a physical map, you must define it to CICS using DEFINE TRANSACTION with the MAPSET attribute.

An alternative to defining maps using RDO is to use the program autoinstall exit to create the definition when the mapset is first used. (For programming information about the autoinstall user program, see the CICS Customization Guide.) The CICS System Definition Guide tells you how to assemble and catalog the maps.

ADS descriptor

Physical maps produced by CICS Transaction Server for OS/390 Release 3 will also include an ADS descriptor in the output load module. This is provided to allow interpretation of the BMS Application Data Structure (the structure used by the application program for the data in SEND and RECEIVE MAP requests), without requiring your program to include the relevant DSECT or copybook at compile time.

The ADS descriptor contains a header with general information about the map, and a field descriptor for every field that appears in the ADS (corresponding to every named field in the map definition macro).

The ADS descriptor is generated for all maps. You can use the DSECT option to select the long form of the ADS, where all fields are aligned on 4-byte boundaries. The long form of the ADS is required by the 3270 Bridge when an interface to MQSeries is used.

Mapset definition macro (DFHMSD)

The DFHMSD macro defines a mapset.

Map definition macro (DFHMDI)

The DFHMDI macro defines a map within the mapset defined by the previous DFHMSD macro. A map contains zero or more fields.

Field definition macro (DFHMDF)

The DFHMDF macro defines a field within a map defined by the previous DFHMDI macro.

Ending a mapset definition

A mapset definition ends with a macro of the form:
BMS macro summary

```
mapset  DFHMSD TYPE=FINAL
```

“mapset” is optional, but if used it must be the same as that on the DFHMSD macro that began the mapset definition.

Partition set definition

Partitions are defined by coding the macros DFHPSD (partition set definition) and DFHPDI (partition definition). Each partition definition must be part of a partition set definition.

Partition set definition macro (DFHPSD)

Each partition set definition contains a single DFHPSD macro followed by one or more DFHPDI macros, and ending with a partition set definition TYPE=FINAL.

Before CICS can load a physical map, you must define a physical map using an RDO transaction with the MAPSET attribute.

An alternative to defining maps using RDO is to use the program autoinstall exit to create the definition when the mapset is first used. (For programming information about the autoinstall user program, CICS Customization Guide.)

Partition definition macro (DFHPDI)

A partition set contains one or more partitions. Each partition is defined by coding a partition definition macro.

Ending a partition set definition

A partition set definition ends with a macro of the form:

```
partnset  DFHPSD TYPE=FINAL
```

The PARTNSET name (if specified) must match that specified on the DFHPSD macro that started the partition set definition.

Field groups

Very often, an output data display field has to contain several subfields, all sharing the same display attributes, and each of which might have to be modified separately. At output, subfields that have not been modified by the program can adopt default data values from the output map. For example, a display can include a date field of a “day” subfield, “month” subfield, and “year” subfield. The contents of the year subfield remain constant over a relatively long period; its value can safely be taken from a map. However, the day value and month value must be updated regularly. Similarly, on input the terminal operator can enter data in each subfield separately.

You use the GRPNAME operand to define a group of subfields that combine to produce a field. The start of the group is indicated by a DFHMDF macro with the GRPNAME operand. This operand defines the first subfield, and specifies the attributes and name of the group. It is followed by other DFHMDF macros, one for each of the other subfields. Each of these must specify the group name, but cannot specify attribute values. The definition of the group is terminated by a DFHMDF macro that specifies a different group name, by one that specifies no group name, or by a DFHMDI or DFHMSD macro.

Briefly, a group of fields in a map would appear as follows in the map definition:
MAPSET DFHMSD....

MAP DFHMDI....

DD DFHMDF GRPNAME=DATE, POS=4/zerodot,
 LENGTH=2, ATTRB=...

MM DFHMDF GRPNAME=DATE, POS=46,
 LENGTH=2

YY DFHMDF GRPNAME=DATE, POS=52,
 LENGTH=2

FIELD DFHMDF LENGTH=5, COLOR=GREEN,...
 DFHMSD TYPE=FINAL

The POS operand specifies the position of the attribute byte of the field even though subfields of a group, other than the first, do not have attributes. If the subfields are positioned contiguously with no intervening blanks, the POS of the second and succeeding subfields must specify the position of the last character of the previous subfield.
Note:
1 DBCS characters start with a shift-out character X‘0E’ and end with a shift-in character X‘0F’.
DFHMDF

Description

The DFHMDF macro defines a field within a map defined by the previous DFHMDI macro. A map contains zero or more fields.

"fld" is the name (1–30 characters) of the field. You should, however, refer to your compiler manual to make sure that there are no other restrictions on the length.

For more information about defining field names, see the CICS Application Programming Guide. If "fld" is omitted, application programs cannot access the field to change its attributes or alter its contents. For an output map, omitting the field name may be appropriate when the INITIAL operand is used to specify the contents of a field. If a field name is specified and the map that includes the field is used in a mapping operation, nonnull data supplied by the user overlays data supplied by initialization (unless default data only is being written).

The performance of input mapping operations is optimized if DFHMDF macros are arranged in numerical order of the POS operand.

You cannot define more than 1023 named fields for a COBOL, C, or PL/I input/output map.

You should ensure that the names of maps, and names of fields within a mapset (or within multiple mapsets that are copied into one application program) are unique. Maps and mapsets must not have the same name.

Before CICS can load a physical map, you must define a physical map using an RDO transaction with the MAPSET attribute.

Operands

ATTRB

This operand applies only to 3270 data stream devices; it is ignored for other devices, except that ATTRB=DRK is honored for the SCS Printer Logical Unit. It is also ignored (except for ATTRB=DRK) if the NLEOM option is specified on the SEND MAP command for transmission to a 3270 printer. In particular, ATTRB=DRK should not be used as a method of protecting secure data on output on non-3270, non-SCS printer terminals. Refer to An Introduction to the IBM 3270 Information Display System for further information.

If ATTRB is specified within a group of fields, it must be specified in the first field entry. A group of fields appears as one field to the 3270. Therefore, the ATTRB specification refers to all of the fields in a group as one field rather than as individual fields. It specifies device-dependent characteristics and attributes, such as the capability of a field to receive data, or the intensity to be used when the field is output. It could however, be used for making an input field nondisplay for secure entry of a password from a screen. For input map fields,

DET and NUM are the only valid options; all others are ignored.

ASKIP is the default and specifies that data cannot be keyed into the field and causes the cursor to skip over the field.

BRT specifies that a high-intensity display of the field is required. Because of the 3270 attribute character bit assignments, a field specified as BRT is also potentially detectable. However, for the field to be recognized as detectable by BMS, DET must also be specified.

DET specifies that the field is potentially detectable.

The first character of a 3270 detectable field must be one of the following:

? > & blank

If ? or >, the field is a selection field; if & or blank, the field is an attention field. (See An Introduction to the IBM 3270 Information Display System for further details about detectable fields.)

A field for which BRT is specified is potentially detectable to the 3270, because of the 3270 attribute character bit assignments, but is not recognized as such by BMS unless DET is also specified.

DET and DRK are mutually exclusive.

If DET is specified for a field on a map with MODE=IN, only one data byte is reserved for each input field. This byte is set to X’00’, and remains unchanged if the field is not selected. If the field is selected, the byte is set to X’FF’.

No other data is supplied, even if the field is a selection field and the ENTER key has been pressed.

If the data in a detectable field is required, all of the following conditions must be fulfilled:

1. The field must begin with one of the following characters:
 ? > & blank
 and DET must be specified in the output map.

2. The ENTER key (or some other attention key) must be pressed after the field has been selected, although the ENTER key is not required for detectable fields beginning with & or a blank.

3. DET must not be specified for the field in the input map. DET must, however,
be specified in the output map. For more information about BMS support of the light pen, see the CICS Application Programming Guide.

DRK specifies that the field is nonprint/nondisplay. DRK cannot be specified if DET is specified.

FSET specifies that the modified data tag (MDT) for this field should be set when the field is sent to a terminal.

Specification of FSET causes the 3270 to treat the field as though it has been modified. On a subsequent read from the terminal, this field is read, whether or not it has been modified. The MDT remains set until the field is rewritten without ATTRB=FSET, or until an output mapping request causes the MDT to be reset.

Either of two sets of defaults may apply when a field is displayed on a 3270 is being defined but not all parameters are specified. If no ATTRB parameters are specified, ASKIP and NORM are assumed.

If any parameter is specified, UNPROT and NORM are assumed for that field unless overridden by a specified parameter.

IC specifies that the cursor is to be placed in the first position of the field. The IC attribute for the last field for which it is specified in a map is the one that takes effect. If not specified for any fields in a map, the default location is zero. Specifying IC with ASKIP or PROT causes the cursor to be placed in an unkeyable field.

This option can be overridden by the CURSOR option of the SEND MAP command that causes the write operation.

NORM specifies that the field intensity is to be normal.

NUM ensures that the data entry keyboard is set to numeric shift for this field unless the operator presses the alpha shift key, and prevents entry of nonnumeric data if the Keyboard Numeric Lock feature is installed.

PROT specifies that data cannot be keyed into the field.

If data is to be copied from one device to another attached to the same 3270 control unit, the first position (address 0) in the buffer of the device to be copied from must not contain an attribute byte for a protected field. Therefore, when preparing maps for 3270s, ensure that the first map of any page does not contain a protected field starting at position 0.

UNPROT specifies that data can be keyed into the field.

CASE specifies that the field contains both uppercase and lowercase data that is to be converted to uppercase if the terminal definition specifies katakana support (KATAKANA(YES) option on RDO TYPETERM definition).

This should be specified if a field is known to contain lowercase Latin characters but may be displayed on a katakana display. It should not be specified if the field may contain valid katakana characters.

COLOR indicates the individual color, or the default color for the mapset (where applicable).

The valid colors are blue, red, pink, green, turquoise, yellow, and neutral.

The COLOR operand is ignored unless the terminal supports color, as indicated by the RDO option COLOR.

GINIT specifies constant or default data for an output field.

GINIT is used to specify data in DBCS character strings, which must be enclosed by SO (shift out, X’0E’) and SI (shift in, X’0F’) characters. When GINIT is specified, the length must be even and is the number of bytes in the string (that is, not the number of DBCS characters). If a graphic data type (PS=X’F8’) is used, and the language is COBOL2, a PIC G is generated. Only one of GINIT, INITIAL, or XINIT may be specified.

GRNAME is the name used to generate symbolic storage definitions and to combine specific fields under one group name. The same group name must be specified for each field that is to belong to the group. The length of the name is up to 30 characters though you should refer to your compiler manual to make sure that there are no other restrictions on the length.

If this operand is specified, the OCCURS operand cannot be specified.

The fields in a group must follow on; there can be gaps between them, but not other fields from outside the group. A field name must be specified for every field that belongs to the group, and the POS operand must also be specified to ensure that the fields follow each other. All the DFHMDF macros defining the fields of a group must be placed together, and in the correct order (ascending numeric order of the POS value).

For example, the first 20 columns of the first six lines of a map can be defined as a group of six fields, as long as the remaining columns on the first five lines are not defined as fields.

The ATTRB operand specified on the first field of the group applies to all of the fields within the group.
HILIGHT
specifies the default highlighting attribute for all fields in all maps in a mapset.

OFF is the default and indicates that no highlighting is used.
BLINK specifies that the field must blink.
REVERSE specifies that the character or field is displayed in reverse video, for example, on a 3278, black characters on a green background.
UNDERLINE specifies that a field is underlined.

The HILIGHT operand is ignored unless the terminal supports highlighting, as indicated by the RDO TYPETERM option HILIGHT(YES).

INITIAL (or XINIT)
specifies constant or default data for an output field. INITIAL is used to specify data in character form; XINIT is used to specify data in hexadecimal form.

For fields with the DET attribute, initial data that begins with one of the following characters:
? > & blank
should be supplied.

The number of characters that can be specified in the INITIAL operand is restricted to the continuation limitation of the assembler to be used or to the value specified in the LENGTH operand (whichever is the smaller).

Hexadecimal data is written as an even number of hexadecimal digits, for example, XINIT=C1C2. If the number of valid characters is smaller than the field length, the data is padded on the right with blanks. For example, if LENGTH=3, XINIT=C1C2 results in an initial field of ‘AB’.

If hexadecimal data is specified that corresponds with line or format control characters, the results are unpredictable. The XINIT operand should therefore be used with care. Only one of GINIT, INITIAL, or XINIT may be specified.

JUSTIFY
specifies the field justifications for input operations. This operand is ignored for TCAM-supported 3600 and 3790, and for VTAM-supported 3600, 3650, and 3790 terminals, because input mapping is not available.

LEFT specifies that data in the input field is left-adjusted.
RIGHT specifies that data in the input field is right-adjusted.
BLANK specifies that blanks are to be inserted in any unfilled positions in an input field.
ZERO specifies that zeros are to be inserted in any unfilled positions in an input field.

LEFT and RIGHT are mutually exclusive, as are BLANK and ZERO. If certain arguments are supplied but others are not, assumptions are made as follows:

Specified Assumed
LEFT BLANK
RIGHT ZERO
BLANK LEFT
ZERO RIGHT

If JUSTIFY is omitted, but the NUM attribute is specified, RIGHT and ZERO are assumed. If JUSTIFY is omitted, but attributes other than NUM are specified, LEFT and BLANK are assumed.

Note: If a field is initialized by an output map or contains data from any other source, data that is typed as input overwrites only the equivalent length of the existing data; surplus existing data remains in the field and could cause unexpected interpretation of the new data.

LENGTH
specifies the length (1–256 bytes) of the field or group of fields. This length should be the maximum length required for application program data to be entered into the field; it should not include the one-byte attribute indicator appended to the field by CICS for use in subsequent processing. The length of each individual subfield within a group must not exceed 256 bytes.

In general LENGTH can be omitted if PICIN or PICOUT is specified, unless PICOUT defines a COBOL picture containing a currency symbol that will be replaced by a currency sign of length greater than 1. LENGTH is required otherwise. You can specify a length of zero only if you omit the label (field name) from the DFHMDF macro. That is, the field is not part of the application data structure and the application program cannot modify the attributes of the field. You can use a field with zero length to delimit an input field on a map.

The map dimensions specified in the SIZE operand of the DFHMDI macro defining a map can be smaller than the actual page size or screen size defined for the terminal.

If the LENGTH specification in a DFHMDF macro causes the map-defined boundary on the same line to be exceeded, the field on the output screen is continued by wrapping.

OCCURS
specifies that the indicated number of entries for the field are to be generated in a map, and that the map definition is to be generated in such a way that the fields are addressable as entries in a matrix or an array. This permits several data fields to be addressed by the same name (subscripted) without generating a unique name for each field.

OCCURS and GRPNAME are mutually exclusive; that is, OCCURS cannot be used when fields have been
DFHMDF

defined under a group name. If this operand is omitted, a value of OCCURS=1 is assumed.

OUTLINE
allows lines to be included above, below, to the left, or to the right of a field. You can use these lines in any combination to construct boxes around fields or groups of fields.

PICIN (COBOL and PL/I only)
specifies a picture to be applied to an input field in an IN or INOUT map; this picture serves as an editing specification that is passed to the application program, thus permitting the user to exploit the editing capabilities of COBOL or PL/I. BMS checks that the specified characters are valid picture specifications for the language of the map.

However, the validity of the input data is not checked by BMS or the high-level language when the map is used, so any desired checking must be performed by the application program. The length of the data associated with "value" should be the same as that specified in the LENGTH operand if LENGTH is specified. If both PICIN and PICOUT are used, an error message is produced if their calculated lengths do not agree; the shorter of the two lengths is used. If PICIN or PICOUT is not coded for the field definition, a character definition of the field is automatically generated regardless of other operands that are coded, such as ATTRB=NUM.

As an example, assume the following map definition is created for reference by a COBOL application program:

```
MAPX DFHMSD TYPE=DSECT,
    LANG=COBOL,
    MODE=INOUT

MAP DFHMDI LINE=1,COLUMN=1,
    SIZE=(1,8)

F1 DFHMDF POS=0,LENGTH=3
F2 DFHMDF POS=4,LENGTH=1,
    PICOUT='$$$,$$/zerodot./zerodot/zerodot'
F3 DFHMDF POS=6,LENGTH=6,
    PICIN='9999V99,
    PICOUT='ZZ9.99'

DFHMSD TYPE=FINAL
```

This generates the following DSECT:

```
01 MAPI.
  02 F1L PIC S9(4) COMP.
  02 F1A PIC X.
  02 FILLER REDEFINES F1A.
  03 F1F PIC X.
  02 F1I PIC X(30).
  02 FILLER PIC X.
  02 F2L PIC S9(4) COMP.
  02 F2A PIC X.
  02 FILLER REDEFINES F2A.
  03 F2F PIC X.
  02 F2I PIC X(10).
  02 FILLER PIC X.
  02 F3L PIC S9(4) COMP.
  02 F3A PIC X.
  02 FILLER REDEFINES F3A.
  03 F3F PIC X.
  02 F3I PIC 9999V99.
  02 FILLER PIC X.

01 MAPO REDEFINES MAPI.
  02 FILLER PIC X(3).
  02 F10 PIC X(30).
  02 FILLER PIC X.
  02 FILLER PIC X(3).
  02 F20 PIC $$$,$$/zerodot./zerodot/zerodot.
  02 FILLER PIC X.
  02 F30 PIC ZZ9.99.
  02 FILLER PIC X.
```

Valid picture values for COBOL input maps are:
A P S V X 9 / and |

Valid picture values for PL/I input maps are:
A B E F G H I K M P R S T V X Y and Z

1 2 3 6 7 8 9 / + - , . * $
$ and (|

Refer to the appropriate language reference manual for the correct syntax of the PICTURE attribute.

Note: PL/I supports multiple currency signs and multi-character currency signs in PICTURE specifications.

The default currency picture symbol is the dollar sign ($), which represents the national currency symbol; for example the dollar ($), the pound (£), or the yen (¥).

The default currency picture symbol may be replaced by a currency string enclosed by less than (<) and greater than (>) symbols. For example:
```
DECLARE
  USPRICE PICTURE '$99.99',
  UKPRICE PICTURE '<£>99.99',
  EUPRICE PICTURE '<EUR>99.99';
```

PICOUT (COBOL and PL/I only)
is similar to PICIN, except that a picture to be applied to an output field in the OUT or INOUT map is generated.
Valid picture values for COBOL output maps are:

A B E P S V X Z 0 9 , . + - $

Valid picture values for PL/I output maps are:

A B E F G H I K M P R S T V
X Y and Z
1 2 3 6 7 8 9 / + - , . /c5197 $
CR DB and (

Refer to the appropriate language reference manual for the correct syntax of the PICTURE attribute.

Note: PL/I supports multiple currency signs and multi-character currency signs in PICTURE specifications.

The default currency picture symbol is the dollar sign ($), which represents the national currency symbol; for example the dollar ($), the pound (£), or the yen (¥).

The default currency picture symbol may be replaced by a currency string enclosed by less than (<) and greater than (>) symbols. For example:

```
DECLARE  
USPRICE PICTURE '$99.99',  
UKPRICE PICTURE '<£99.99',  
EUPRICE PICTURE '<EUR>99.99';
```

Note: COBOL supports multiple currency signs and multi-character currency signs in PICTURE specifications.

The default currency picture symbol is the dollar sign ($), which represents the national currency symbol; for example the dollar ($), the pound (£), or the yen (¥).

The default currency picture symbol may be replaced by a different currency picture symbol that is defined in the SPECIAL NAMES clause. The currency sign represented by the picture symbol is defined in the same clause. For example:

```
SPECIAL NAMES.  
CURRENCY SIGN IS '$' WITH PICTURE SYMBOL '$'.  
CURRENCY SIGN IS '£' WITH PICTURE SYMBOL '£'.  
CURRENCY SIGN IS 'EUR' WITH PICTURE SYMBOL '#'.
```

WORKING STORAGE SECTION.
01 USPRICE PIC $99.99.
01 UKPRICE PIC £99.99.
01 ECPRICE PIC #99.99.

LENGTH must be specified when PICOUT specifies a COBOL picture containing a currency symbol that will be replaced by a currency sign of length greater than 1.

POS specifies the location of a field. This operand specifies the individually addressable character location in a map at which the attribute byte that precedes the field is positioned.

number specifies the displacement (relative to zero) from the beginning of the map being defined.

(line,column) specify lines and columns (relative to one) within the map being defined.

The location of data on the output medium is also dependent on DFHMDI operands.

The first position of a field is reserved for an attribute byte. When supplying data for input mapping from non-3270 devices, the input data must allow space for this attribute byte. Input data must not start in column 1 but may start in column 2.

The POS operand always contains the location of the first position in a field, which is normally the attribute byte when communicating with the 3270. For the second and subsequent fields of a group, the POS operand points to an assumed attribute-byte position, ahead of the start of the data, even though no actual attribute byte is necessary. If the fields follow on immediately from one another, the POS operand should point to the last character position in the previous field in the group.

When a position number is specified that represents the last character position in the 3270, two special rules apply:

- ATTRIB=IC should not be coded. The cursor can be set to location zero by using the CURSOR option of a SEND MAP, SEND CONTROL, or SEND TEXT command.

- If the field is to be used in an output mapping operation with MAP=DATAONLY on the SEND MAP command, an attribute byte for that field must be supplied in the symbolic map data structure by the application program.

PS specifies that programmed symbols are to be used. This overrides any PS operand set by the DFHMDI macro or the DFHMSD macro.

BASE is the default and specifies that the base symbol set is to be used.

psid specifies a single EBCDIC character, or a hexadecimal code of the form X’n’, that identifies the set of programmed symbols to be used.

The PS operand is ignored unless the terminal supports programmed symbols, as indicated by
PROGSYMBOLS(YES) on the RDO TYPETERM definition.

SOSI
indicates that the field may contain a mixture of EBCDIC and DBCS data. The DBCS subfields within an EBCDIC field are delimited by SO (shift out) and SI (shift in) characters. SO and SI both occupy a single screen position (normally displayed as a blank). They can be included in any non-DBCS field on output, if they are correctly paired. The terminal user can transmit them inbound if they are already present in the field, but can add them to an EBCDIC field only if the field has the SOSI attribute.

TRANS

determines whether the background of an alphanumeric field is transparent or opaque, that is, whether an underlying (graphic) presentation space is visible between the characters.

VALID

specifies that:

• validation is to be used on an 8775 terminal
• this field can be processed by the BMS global user exits

This overrides any VALIDN operand on the DFHMDI macro or the DFHMSD macro.

MUSTFILL
specifies that the field must be filled completely with data. An attempt to move the cursor from the field before it has been filled, or to transmit data from an incomplete field, raises the INHIBIT INPUT condition

MUSTENTER
specifies that data must be entered into the field, though need not fill it. An attempt to move the cursor from an empty field raises the INHIBIT INPUT condition

TRIGGER
specifies that this field is a trigger field. Trigger fields are discussed in the CICS Application Programming Guide.

USEREXIT
specifies that this field is to be processed by the BMS global user exits, XBMIN and XBMOUT, if this field is received or transmitted in a 3270 datastream when the respective exit is enabled. For further information on the use of the BMS global user exits refer to the CICS Customization Guide.

The MUSTFILL, MUSTENTER and TRIGGER specifications are valid only for terminals that support the field validation extended attribute, otherwise they are ignored. The USEREXIT specification applies to all 3270 devices.

Note: The USEREXIT specification is totally unconnected with the field validation extended attribute as defined in the 3270 datastream architecture.

XINIT
see INITIAL, earlier in the list. Only one of GINIT, INITIAL, or XINIT may be specified.
Map definition.

Minimum BMS:

```
map = DFHMDI
   SIZE = (line, column)
   TERM = type
   CTRL = (PRINT, length, FREEKB, ALARM, FRSET, NO)
   EXTATT = MAPONLY, YES
   COLOR = DEFAULT, color
   CURSLOC = YES, OFF
   HILIGHT = BLINK, REVERSE, UNDERLINE
   VALID = MUSTFILL, MUSTENTER, TRIGGER, USEREXIT
   COLUMN = number
   VALIDN = 2
   TERM = type
   PS = BASE, psid
   EXTATT = MAPATTS = (attr)
   DSATT = (attr)
   OUTLINE = BOX
   PARTN = (name)
   OBFMT = YES
   DATA = BLOCK
   TIOAPFX = NO
   FLDSEP = char, X'hex-char'
```

Standard BMS:

```
PARTN = (name)
OBFMT = YES
DATA = BLOCK
TIOAPFX = NO
FLDSEP = char, X'hex-char'
```
The DFHMDI macro defines a map within the mapset defined by a previous DFHMSD macro. A map contains zero or more fields.

"map" is the name (1–7 characters) of the map.

Note for COBOL users: If the maps are for use in a COBOL program, and STORAGE=AUTO has not been specified in the DFHMSD macro, they must be specified in descending size sequence. (Size refers to the generated 01-level data areas and not to the size of the map on the screen.) You should ensure that the names of maps, and names of fields within a mapset (or within multiple mapsets that are copied into one application program) are unique. Maps and mapsets must not have the same name.

Before CICS can load a physical map, you must define a physical map using an RDO DEFINE MAPSET command.

Operands

COLOR indicates the individual color, or the default color for the mapset (where applicable). This is overridden by the COLOR operand of the DFHMDF macro.

The valid colors are blue, red, pink, green, turquoise, yellow, and neutral.

The COLOR operand is ignored unless the terminal supports color, as indicated by the RDO TYPETERM definition option COLOR(YES).>

COLUMN specifies the column in a line at which the map is to be placed, that is, it establishes the left or right map margin. The JUSTIFY operand of the DFHMDI macro controls whether map and page margin selection and column counting are to be from the left or right side of the page. The columns between the specified map margin and the page margin are not available for subsequent use on the page for any lines included in the map.

NUMBER is the column from the left or right page margin where the left or right map margin is to be established.

NEXT indicates that the left or right map margin is to be placed in the next available column from the left or right on the current line.

SAME indicates that the left or right map margin is to be established in the same column as the last nonheader or nontrailer map used that specified COLUMN=number and the same JUSTIFY operands as this macro.

For input operations, the map is positioned at the extreme left-hand or right-hand side, depending on whether JUSTIFY=LEFT or JUSTIFY=RIGHT has been specified.

CTRL defines characteristics of IBM 3270 terminals. Use of any of the control options in the SEND MAP command overrides all control options in the DFHMDI macro, which in turn overrides all control options in the DFHMSD macro.

If CTRL is used with cumulative BMS paging (that is, the ACCUM option is used on the BMS SEND MAP commands), it must be specified on the last (or only) map of a page, unless it is overridden by the ALARM, FREEKB and so on, options on the SEND MAP or accumulated SEND CONTROL command.

PRINT must be specified if the printer is to be started; if omitted, the data is sent to the printer buffer but is not printed. This operand is ignored if the mapset is used with 3270 displays without the Printer Adapter feature.

LENGTH indicates the line length on the printer; length can be specified as L40, L64, L80, or HONEOM. L40, L64, and L80 force a new line after 40, 64, or 80 characters, respectively. HONEOM causes the default printer line length to be used. If this option is
omitted, BMS sets the line length from the TCT page size.

FREEKB causes the keyboard to be unlocked after the map is written. If FREEKB is not specified, the keyboard remains locked; data entry from the keyboard is inhibited until this status is changed.

ALARM activates the 3270 audible alarm. For non-3270 VTAM terminals it sets the alarm flag in the FMH. (This feature is not supported by interactive and batch logical units.)

FRSET specifies that the modified data tags (MDTs) of all fields currently in the 3270 buffer are to be reset to an unmodified condition (that is, field reset) before map data is written to the buffer. This allows the DFHMDF macro with the ATTRB operand to control the final status of any fields written or rewritten in response to a BMS command.

Note: CTRL cannot be specified in the DFHMDI and DFHMSD macros in the same mapset.

Cursloc indicates that for all RECEIVE MAP operations using this map on 3270 terminals, BMS sets a flag in the application data structure element for the field where the cursor is located.

The flag may be tested by DFHBMCUR (see copybook DFHBMSCA in Appendix J, “BMS-related constants” on page 421).

To test the flag (COBOL example):

```cobol
(DFHBMSCA)
... 02 DFHMEOF PIC X VALUE X'80'.
  02 DFHBMCUR PIC X VALUE X'02'.
  02 DFHMMEC PIC X VALUE X'82'.
  02 DFHMFLG PIC X.
  88 DFHERASE VALUES ARE X'80', X'82'.
  88 DFHCURSR VALUES ARE X'02', X'82'.
MOVE FLD1F TO DFHMFLG.
IF DFHERASE THEN ... ELSE ... IF DFHCURSR THEN ... ELSE ...
```

Notes:

1. If CURSLOC=YES is specified for the MAP definitions, and there is no data for any field of the application data structure, but the cursor lies within a field known to the application data structure, BMS sets the cursor flag for the appropriate field, but the data for all fields in the application data structure is null, and the MAPFAIL condition does not occur. The unmapped data stream is not available to the application program unless it is a RECEIVE DATA FROM request.

2. A valid CURSLOC definition in DFHMDI overrides the definition in DFHMSD.

DATA specifies the format of the data.

FIELD specifies that the data is passed as contiguous fields, each field having the format:

```
| LL | A | data field |
```

"LL" is two bytes specifying the length of the data as input from the terminal (ignored in output processing). "A" is a byte into which the programmer can place an attribute to override that specified in the map used to process this data (see copybook DFHBMSCA in Appendix J, “BMS-related constants” on page 421).

BLOCK specifies that the data is passed as a continuous stream in the following format:

```
| A | data field | space |
```

This stream is processed as line segments of the length specified in the map used to process the data. The data is in the form in which it appears at the terminal; that is, it contains data fields and interspersed blanks corresponding to any spaces that are to appear between the fields on output. You cannot use DSATTS=YES if you specify DATA=BLOCK.

Block data is further discussed in the CICS Application Programming Guide.

DSATTS specifies the attribute types to be included in the symbolic description map. These types can be one or more of the following: COLOR, HILIGHT, OUTLINE, PS, SOSI, TRANSP, and VALIDN. Any type included in DSATTS should also be included in MAPATTS.

EXTATT this operand is supported for compatibility with previous releases. Each of the extended attributes can be defined individually. For new maps, the operands DSATTS and MAPATTS should be used instead.

NO is equivalent to specifying neither the DSATTS operand nor the MAPATTS operand.

YES is equivalent to:

```
MAPATTS=(COLOR,HILIGHT,PS,VALIDN)
DSATTS=(COLOR,HILIGHT,PS,VALIDN)
```

MAPONLY is equivalent to:

```
MAPATTS=(COLOR,HILIGHT,PS,VALIDN)
```
DFHMDI

FIELDS
specifies whether or not the map contains fields. If you specify FIELDS=NO, you create a null map that defines a “hole” in BMS’s view of the screen. BMS cannot change the contents of such a hole after it has created it by sending a null map.

FLDSEP
specifies the field separator sequence (1–4 characters) for input from non-3270 devices. Input from non-3270 devices can be entered as a single string of data with the field separator sequence delimiting fields. The data between the field separators is moved to the input fields in the map in order.

HEADER
allows the map to be used during page building without terminating the OVERFLOW condition. This operand may be specified for more than one map in a mapset.

HILIGHT
specifies the default highlighting attribute for all fields in all maps in a mapset. This is overridden by the HILIGHT operand of the DFHMDF.

OFF
is the default and indicates that no highlighting is used.

BLINK
specifies that the field must blink.

REVERSE
specifies that the character or field is displayed in reverse video, for example, on a 3278, black characters on a green background.

UNDERLINE
specifies that a field is underlined.

The HILIGHT operand is ignored unless the terminal supports highlighting, as indicated by HILIGHT(YES) on the RDO TYPETERM definition.

JUSTIFY
specifies the position of the map on the page.

LEFT
specifies that the map is to be positioned starting at the specified column from the left margin on the specified line.

RIGHT
specifies that the map is to be positioned starting at the specified column from the right margin on the specified line.

FIRST
specifies that the map is to be positioned as the first map on a new page. Any partially formatted page from preceding BMS commands is considered to be complete. This operand can be specified for only one map per page.

LAST
indicates that the map is to be positioned at the bottom of the current page. This operand can be specified for multiple maps to be placed on one page. However, maps other than the first map for which it is specified must be able to be positioned horizontally without requiring that more lines be used.

BOTTOM
for a SEND MAP ACCUM command has the same effect as LAST, above. For a SEND MAP command (without ACCUM) and a RECEIVE MAP command, JUSTIFY=BOTTOM positions the map at the bottom of the screen if the number of lines in the map is specified in the SIZE operand. No account is taken of trailer maps in the mapset. JUSTIFY=BOTTOM is equivalent to specifying

\[
\text{LINE} = (\text{screendepth} - \text{mapdepth} + 1)
\]

on the map definition, but it allows the same map to be used for different screen sizes. JUSTIFY=BOTTOM is ignored if the number of lines is not also specified. If JUSTIFY=BOTTOM and LINE are both specified, the value specified in LINE is ignored.

LEFT and RIGHT are mutually exclusive, as are FIRST and LAST. If neither FIRST nor LAST is specified, the data is mapped at the next available position as determined by other parameters of the map definition and the current mapping operation. FIRST or LAST is ignored unless ACCUM is specified on SEND MAP commands; otherwise only one map is placed on each page.

Note: If a field is initialized by an output map or contains data from any other source, data that is keyed as input overwrites only the equivalent length of the existing data; surplus existing data remains in the field and could cause unexpected interpretation of the new data.

LINE
specifies the starting line on a page in which data for a map is to be formatted.

NUMBER
is a value in the range 1–240, specifying a starting line number. A request to map, on a line and column, data that has been formatted in response to a preceding BMS command, causes the current page to be treated as though complete. The new data is formatted at the requested line and column on a new page.

NEXT
specifies that formatting of data is to begin on the next available completely empty line. If LINE=NEXT is specified in the DFHMDI macro, it is ignored for input operations and LINE=1 is assumed.

SAME
specifies that formatting of data is to begin on the same line as that used for a preceding BMS command. If COLUMN=NEXT is specified, it is ignored for input operations and COLUMN=1 is
assumed. If the data does not fit on the same line, it is placed on the next available line that is completely empty.

MAPATTS specifies the attribute types to be included in the physical map. These types can be one or more of the following: COLOR, HILIGHT, OUTLINE, PS, SOSI, TRANSP, and VALIDN. This list must include all the attribute types to be specified for individual fields in the map (DFHMDF macro).

Where possible these values are deduced from operands already specified in the DFHMDI and DFHMSD macros. For example, if COLOR=BLUE has been specified, MAPATTS=COLOR is assumed.

OBFMT specifies whether outboard formatting is to be used. This operand is available only for 3650 logical units, or for an 8100 series processor running DPS Release 2 and defined to CICS as an LUTYPE2 logical unit. For more information, see the CICS Application Programming Guide.

The OBFMT operand overrides the OBFMT operand on the DFHMSD macro.

YES specifies that this map definition can be used in outboard formatting.

NO specifies that this map definition cannot be used in outboard formatting.

OUTLINE allows lines to be included above, below, to the left, or to the right of a field. You can use these lines in any combination to construct boxes around fields or groups of fields.

PARTN specifies the default partition to be associated with maps in this mapset. If the ACTIVATE option is specified, the specified partition is also activated when maps in this mapset are output to a terminal that supports partitions.

This option overrides the PARTN option of the DFHMSD macro and is overridden by any OUTPARTN or ACTPARTN option on the SEND MAP command, or the INPARTN option on a RECEIVE MAP command.

The PARTN option is ignored if the target terminal does not support partitions, or if there is no partition set associated with the transaction.

PS specifies that programmed symbols are to be used. This overrides the PS operand of the DFHMSD macro and is overridden by the PS operand of the DFHMDF macro.

BASE specifies that the base symbol set is to be used.

psid specifies a single EBCDIC character, or a hexadecimal code of the form X’nn’n’, that identifies the set of programmed symbols to be used.

The PS operand is ignored unless the terminal supports programmed symbols, as indicated by the PROGSYMBOLS(YES) on the RDO TYPETERM definition.

SIZE specifies the size of a map.

line is a value in the range 1–240, specifying the depth of a map as a number of lines.

column is a value in the range 1–240, specifying the width of a map as a number of columns.

This operand is required in the following cases:

- An associated DFHMDF macro with the POS operand is used.
- The map is to be referred to in a SEND MAP command with the ACCUM option.
- The map is to be used when referring to input data from other than a 3270 terminal in a RECEIVE MAP command.

SOSI indicates that the field may contain a mixture of EBCDIC and DBCS data. The DBCS subfields within an EBCDIC field are delimited by SO (shift out) and SI (shift in) characters. SO and SI both occupy a single screen position (normally displayed as a blank). They can be included in any non-DBCS field on output, if they are correctly paired. The terminal user can transmit them inbound if they are already present in the field, but can add them to an EBCDIC field only if the field has the SOSI attribute.

TERM kept for compatibility with previous releases.

TIOAPFX specifies whether BMS should include a filler in the symbolic description maps to allow for the unused TIOA prefix. This operand overrides the TIOAPFX operand specified for the DFHMSD macro.

YES specifies that the filler should be included in the symbolic description maps. If TIOAPFX=YES is specified, all maps within the mapset have the filler. TIOAPFX=YES should always be used for command-level application programs.

NO is the default and specifies that the filler is not to be included.

TRAILER allows the map to be used during page building without terminating the OVERFLOW condition. This operand may be specified for more than one map in a mapset. If a trailer map is used other than in the overflow environment, the space normally reserved for overflow
DFHMDI

trailer maps is not reserved while mapping the trailer map.

TRANSP
determines whether the background of an alphanumeric field is transparent or opaque, that is, whether an underlying (graphic) presentation space is visible between the characters.

VALIDN specifies that:

- validation is to be used on an 8775 terminal
- this field can be processed by the BMS global user exits

This is overridden by the VALIDN operand of the DFHMDDF macro, and overrides the VALIDN operand of the DFHMSD macro.

MUSTFILL specifies that the field must be filled completely with data. An attempt to move the cursor from the field before it has been filled, or to transmit data from an incomplete field, raises the INHIBIT INPUT condition.

MUSTENTER specifies that data must be entered into the field, though need not fill it. An attempt to move the cursor from an empty field raises the INHIBIT INPUT condition.

TRIGGER specifies that this field is a trigger field. Trigger fields are discussed in the CICS Application Programming Guide.

USEREXIT specifies that this field is to be processed by the BMS global user exits, XBMIN and XBMOUT, if this field is received or transmitted in a 3270 datastream when the respective exit is enabled. For further information on the use of the BMS global user exits refer to the CICS Customization Guide.

The MUSTFILL, MUSTENTER and TRIGGER specifications are valid only for terminals that support the field validation extended attribute, otherwise they are ignored. The USEREXIT specification applies to all 3270 devices.

Note: The USEREXIT specification is totally unconnected with the field validation extended attribute as defined in the 3270 datastream architecture.
Mapset definition.

Minimum BMS:
A DFHMSD macro defines a mapset; it begins:

```
DFHMSD TYPE=MAP (or TYPE=DSECT)
```

and ends:

```
DFHMSD TYPE=FINAL
```

"mapset" is the name (1–7 characters) of the mapset.

A DFHMSD macro contains one or more map definition macros, each of which contains one or more field definition macros.

You should ensure that the names of maps, and names of fields within a mapset (or within multiple mapsets that are copied into one application program) are unique. Maps and mapsets must not have the same name.

Before CICS can load a physical map, you must define a physical map using an RDO DEFINE MAPSET command.

You assemble a BMS mapset definition to generate either a symbolic description map or a physical map. The CICS System Definition Guide tells you how to assemble and catalog the maps.

Operands

BASE

specifies that the same storage base is used for the symbolic description maps from more than one mapset. The same name is specified for each mapset that is to share the same storage base. Because all mapsets with the same base describe the same storage, data related to a previously used mapset may be overwritten when a new mapset is used. Different maps within the same mapset also overlay one another.

This operand is not valid for assembler-language programs, and cannot be used when STORAGE=AUTO has been specified.

COLOR

indicates the individual color, or the default color for the mapset (where applicable). This is overridden by the COLOR operand of the DFHMDI macro, which is in turn overridden by the COLOR operand of the DFHMDF macro.

The valid colors are blue, red, pink, green, turquoise, yellow, and neutral.

The COLOR operand is ignored unless the terminal supports color, as indicated by the RDO TYPETERM definition COLOR(YES) option.

CTRL

defines characteristics of IBM 3270 terminals. Use of any of the control options in the SEND MAP command overrides all control options in the DFHMDI macro, which in turn overrides all control options in the DFHMSD macro.

If CTRL is used with cumulative BMS paging (that is, the ACCUM option is used on the BMS SEND MAP commands), it must be specified on the last (or only) map of a page, unless it is overridden by the ALARM, FREEKB and so on, options on the SEND MAP or accumulated SEND CONTROL command.

PRINT

must be specified if the printer is to be started; if omitted, the data is sent to the printer buffer but is not printed. This operand is ignored if the mapset is used with 3270 displays without the Printer Adapter feature.

LENGTH

indicates the line length on the printer; length can be specified as L40, L64, L80, or HONEOM. L40, L64, and L80 force a new line after 40, 64, or 80 characters, respectively. HONEOM causes the default printer line length to be used. If this option is
omitted, BMS sets the line length from the TCT page size.

FREEKB causes the keyboard to be unlocked after the map is written. If FREEKB is not specified, the keyboard remains locked; data entry from the keyboard is inhibited until this status is changed.

ALARM activates the 3270 audible alarm. For non-3270 VTAM terminals, it sets the alarm flag in the FMH. (This feature is not supported by interactive and batch logical units.)

FRSET specifies that the modified data tags (MDTs) of all fields currently in the 3270 buffer are to be reset to a not-modified condition (that is, field reset) before map data is written to the buffer. This allows the DFHMDF macro with the ATTRB operand to control the final status of any fields written or rewritten in response to a BMS command.

CURSLOC indicates that for all RECEIVE MAP operations using this map on 3270 terminals, BMS sets a flag in the application data structure element for the field where the cursor is located.

The flag may be tested by DFHBMCUR (see copybook DFHBMSCA in Appendix J, “BMS-related constants” on page 421).

To test the flag (COBOL example):

```
(DFHBMSCA)
02 DFHMEOF PIC X VALUE X'80'.
02 DFHMCUR PIC X VALUE X'02'.
02 DFHBMEC PIC X VALUE X'82'.
02 DFHBMFLG PIC X.
88 DFHERASE VALUES ARE X'80', X'82'.
88 DFHCURSR VALUES ARE X'02', X'82'.
MOVE FLD1F TO DFHBMFLG.
IF DFHERASE THEN ...
   ELSE ...
IF DFHCURSR THEN ...
   ELSE ...
```

Notes:

1. If CURSLOC=YES is specified for the MAP definitions, and there is no data for any field of the application data structure, but the cursor lies within a field known to the application data structure, BMS sets the cursor flag for the appropriate field, but the data for all fields in the application data structure is null, and the MAPFAIL condition does not occur. The unmapped data stream is not available to the application program unless it is a RECEIVE DATA FROM request.

2. A valid CURSLOC definition in DFHMDI overrides the definition in DFHMSD.

DATA specifies the format of the data.

FIELD specifies that the data is passed as contiguous fields, each field having the format:

```
| LL | A | data field |
```

“LL” is two bytes specifying the length of the data as input from the terminal (these two bytes are ignored in output processing). “A” is a byte into which the programmer can place an attribute to override that specified in the map used to process this data (see copybook DFHBMSCA in Appendix J, “BMS-related constants” on page 421).

BLOCK specifies that the data is passed as a continuous stream in the following format:

```
| A | data field | space |
```

This stream is processed as line segments of the length specified in the map used to process the data. The data is in the form that it appears on the terminal; that is, it contains data fields and interspersed blanks corresponding to any spaces that are to appear between the fields on output. You cannot use DSATTSS=YES, if you specify DATA=BLOCK.

Block data is further discussed in the *CICS Application Programming Guide*.

DSATTSS specifies the attribute types to be included in the symbolic description map. These types can be one or more of the following: COLOR, HILIGHT, OUTLINE, PS, SOSI, TRANSP, and VALIDN. Any type included in DSATTSS should also be included in MAPATTSS.

DSECT specifies whether the copybook generated supports the normal or long form of the application data structure (ADS).

ADS (default) requests mapping of the normal form of the ADS.

ADSL requests mapping of the long form of the ADS, where all fields are aligned on 4-byte boundaries. This form is required by the 3270 Bridge interface to MQSeries. See the *CICS External Interfaces Guide* for more information about the 3270 Bridge.

This option requires LANG=C.

EXTATT this operand is supported for compatibility with previous releases. Each of the extended attributes can be defined...
DFHMSD

individually. For new maps, the operands DSATTS and MAPATTS should be used instead.

NO

is equivalent to specifying neither the DSATTS operand nor the MAPATTS operand.

YES

is equivalent to:

MAPATTS=(COLOR,HILIGHT,PS,VALIDN)
DSATTS=(COLOR,HILIGHT,PS,VALIDN)

MAPONLY

is equivalent to:

MAPATTS=(COLOR,HILIGHT,PS,VALIDN)

FLDSEP

specifies the field separator sequence (1–4 characters) for input from non-3270 devices. Input from non-3270 devices can be entered as a single string of data with the field separator sequence delimiting fields. The data between the field separators is moved to the input fields in the map in order.

FOLD

specifies whether to generate lowercase or uppercase characters in C language programs.

FOLD is only available for programs written in C.

HILIGHT

specifies the default highlighting attribute for all fields in all maps in a mapset. This is overridden by the HILIGHT operand of the DFHMDI, which is in turn overridden by the HILIGHT operand of the DFHMDF.

OFF

is the default and indicates that no highlighting is used.

BLINK

specifies that the field must blink.

REVERSE

specifies that the character or field is displayed in reverse video, for example, on a 3278, black characters on a green background.

UNDERLINE

specifies that a field is underlined.

The HILIGHT operand is ignored unless the terminal supports highlighting, as indicated by HILIGHT(YES) on the RDO TYPETERM definition.

HTAB

specifies one or more tab positions for use with interactive and batch logical units and SCS printers with horizontal forms control.

LANG

specifies the source language of the application programs into which the symbolic description maps in the mapset are copied. This option need only be coded for DFHMSD TYPE=DSECT. If a mapset is to be used by more than one program, and the programs are not all written in the same source language, a separate version of the mapset must be defined for each programming language.

LDC

specifies the code to be used by CICS to determine the logical device mnemonic to be used for a BMS output operation. If no LDC operand has been specified on any previous BMS output in the logical message, this LDC will be transmitted in the function management header to the logical unit. This operand is used only for TCAM and VTAM-supported 3600 terminals, and batch logical units.

MAPATTS

specifies the attribute types to be included in the physical map. These types can be one or more of the following: COLOR, HILIGHT, OUTLINE, PS, SOSI, TRANSP, and VALIDN. This list must include all the attribute types to be specified for individual fields in the map (DFHMDF macro).

Where possible these values are deduced from operands already specified in the DFHMDI and DFHMSD macros. For example, if COLOR=BLUE has been specified, MAPATTS=COLOR is assumed.

MODE

specifies whether the mapset is to be used for input, output, or both.

OBFMT

specifies whether outboard formatting is to be used. This operand is available only for 3650 logical units, or for an 8100 series processor running DPS Release 2 and defined to CICS as a LUTYPE2 logical unit. For more information, see the CICS Application Programming Guide.

The OBFMT operand on DFHMSD is overridden by the OBFMT operand on DFHMDI.

YES

specifies that all maps within this mapset can be used in outboard formatting, except those for which OBFMT=NO is specified in the DFHMDI macro.

NO

specifies that no maps within this mapset can be used in outboard formatting, except those for which OBFMT=YES is specified in DFHMDI.

OUTLINE

allows lines to be included above, below, to the left, or to the right of a field. You can use these lines in any combination to construct boxes around fields or groups of fields.

PARTN

specifies the default partition to be associated with maps in this mapset. If the ACTIVATE option is specified, the specified partition is also activated when maps in this mapset are output to a terminal that supports partitions. This option is overridden by the PARTN operand of the DFHMDI macro, which is in turn overridden by any OUTPARTN or ACTPARTN option on the SEND MAP command, or the INPARTN option on a RECEIVE MAP command.
The PARTN operand is ignored if the target terminal does not support partitions, or if there is no partition set associated with the transaction.

PS specifies that programmed symbols are to be used. This is overridden by the PS operand of the DFHMDI macro, which in turn overridden by the PS operand of the DFHMDM macro.

BASE specifies that the base symbol set is to be used.

psid specifies a single EBCDIC character, or a hexadecimal code of the form X'nn', that identifies the set of programmed symbols to be used.

The PS operand is ignored unless the terminal supports programmed symbols, as indicated by PROGSYMBOLS(YES) on the RDO TYPETERM definition.

SOSI indicates that the field may contain a mixture of EBCDIC and DBCS data. The DBCS subfields within an EBCDIC field are delimited by SO (shift out) and SI (shift in) characters. SO and SI both occupy a single screen position (normally displayed as a blank). They can be included in any non-DBCS field on output provided they are correctly paired. The terminal user can transmit them inbound if they are already present in the field, but can add them to an EBCDIC field only if the field has the SOSI attribute.

STORAGE

The meaning of this operand depends upon the language in which application programs are written, as follows:

For a COBOL program, STORAGE=AUTO specifies that the symbolic description maps in the mapset are to occupy separate areas of storage instead of overlaying one another.

For an assembler-language program, STORAGE=AUTO specifies that individual maps within a mapset are to occupy separate areas of storage instead of overlaying one another.

SUFFIX specifies a 1-character, user-defined, device-dependent suffix for this mapset, as an alternative to a suffix generated by the TERM operand. The suffix specified by this operand should match the value of a transaction defined with ALTSUFFIX, or ALTSSFX in the terminal control table TYPE=TERMINAL. Use a numeric value to avoid conflict with suffixes generated by the TERMINAL operand.

TERM specifies the type of terminal or logical unit (LU) associated with the mapset. If no terminal type or LU is specified, 3270 is assumed. The terminal types and LUs you can specify, together with their generated suffixes, are shown in Table 27.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRLP1</td>
<td>A</td>
</tr>
<tr>
<td>TAPE</td>
<td>B</td>
</tr>
<tr>
<td>DISK</td>
<td>C</td>
</tr>
<tr>
<td>TWX</td>
<td>D</td>
</tr>
<tr>
<td>1050</td>
<td>E</td>
</tr>
<tr>
<td>2740</td>
<td>F</td>
</tr>
<tr>
<td>2741</td>
<td>G</td>
</tr>
<tr>
<td>2770</td>
<td>I</td>
</tr>
<tr>
<td>2780</td>
<td>J</td>
</tr>
<tr>
<td>3780</td>
<td>K</td>
</tr>
<tr>
<td>3270-1 (40-column)</td>
<td>L</td>
</tr>
<tr>
<td>3270-2 (80-column)</td>
<td>M</td>
</tr>
<tr>
<td>INTLU/3767/3770I/SCS2</td>
<td>P</td>
</tr>
<tr>
<td>2980</td>
<td>Q</td>
</tr>
<tr>
<td>2980-4</td>
<td>R</td>
</tr>
<tr>
<td>32703</td>
<td>blank</td>
</tr>
<tr>
<td>3601</td>
<td>U</td>
</tr>
<tr>
<td>36534</td>
<td>V</td>
</tr>
<tr>
<td>3650UP5</td>
<td>W</td>
</tr>
<tr>
<td>3650/32706</td>
<td>X</td>
</tr>
<tr>
<td>BCHLU/3770B7</td>
<td>Y</td>
</tr>
<tr>
<td>ALL (all the above)</td>
<td>blank</td>
</tr>
</tbody>
</table>

Notes:
2. All interactive LUs including 3790 full-function LU and SCS printer LUs (3270 and 3790).
3. Default if TERM omitted. Same as ALL; used when no need to distinguish between models.
4. Plus host-conv (3653) LU.
5. Plus interpreter LU.
6. Plus host-conv (3270) LU.
7. Plus all batch and BDI LUs.

In addition, you should note the following:
For TCAM-connected terminals (other than 3270 or SNA devices), use either CRLP or ALL; for TCAM-connected 3270s or SNA devices, select the appropriate parameter in the normal way.

If ALL is specified, ensure that device dependent characters are not included in the mapset and that format characteristics such as page size are suitable for all input/output operations (and all terminals) in which the mapset is applied. For example, some terminals are limited to 480 bytes, others to 1920 bytes; the 3604 is limited to six lines of 40 characters each. Within these guidelines, use of ALL can offer important advantages. Because an assembly run is required for each map generation, the use of ALL, indicating that one map is to be used for more than one terminal, can result in significant time and storage savings.

However, better run-time performance for maps used by single terminal types is achieved if the terminal type (rather than ALL) is specified. Alternatively, BMS support for device-dependent mapsets can be bypassed by specifying NODDS in the BMS operand of the system initialization parameters. For more information, see the CICS Resource Definition Guide.

TIOAPFX

specifies whether BMS should include a filler in the symbolic description maps to allow for the unused TIOA prefix.

YES specifies that the filler should be included in the symbolic description maps. If TIOAPFX=YES is specified, all maps within the mapset have the filler, except when TIOAPFX=NO is specified on the DFHMDI macro. TIOAPFX=YES should always be used for command-level application programs.

NO is the default and specifies that the filler is not to be included. The filler may still be included for a map if TIOAPFX=YES is specified on DFHMDI.

TRANSP
determines whether the background of an alphanumeric field is transparent or opaque, that is, whether an underlying (graphic) presentation space is visible between the characters.

TRIGRAPH

specifies trigraph sequences to be used in C/370 language symbolic description maps.

When TRIGRAPH=YES, trigraph sequences are produced:

{ prints as ??<
} prints as ??>
[prints as ??(
] prints as ??)

This option is only available for programs written in C.

TYPE

specifies the type of map to be generated using the definition. Both types of map must be generated before the mapset can be used by an application program. If aligned symbolic description maps are required, you should ensure that you specify SYSPARM=ADSECT and SYSPARM=AMAP when you assemble the symbolic and physical maps respectively.

DSECT specifies that a symbolic description map is to be generated. Symbolic description maps must be copied into the source program before it is translated and compiled.

MAP specifies that a physical map is to be generated. Physical maps must be assembled or compiled, link-edited, and cataloged in the CICS program library before an application program can use them.

If both map and DSECT are to be generated in the same job, the SYSPARM option can be used in the assembler job execution step, as described in the CICS Transaction Server for OS/390 Installation Guide.

VALIDN

specifies that:

- validation is to be used on an 8775 terminal
- this field can be processed by the BMS global user exits

This is overridden by the VALIDN operand of the DFHMDI macro, which is in turn overridden by the VALIDN of the DFHMDF macro.

MUSTFILL specifies that the field must be filled completely with data. An attempt to move the cursor from the field before it has been filled, or to transmit data from an incomplete field, raises the INHIBIT INPUT condition.

MUSTENTER specifies that data must be entered into the field, though need not fill it. An attempt to move the cursor from an empty field raises the INHIBIT INPUT condition.

TRIGGER specifies that this field is a trigger field. Trigger fields are discussed in the CICS Application Programming Guide.

USEREXIT specifies that this field is to be processed by the BMS global user exits, XBMIN and XBMOUT, if this field is received or transmitted in a 3270 datastream when the respective exit is enabled. For further information on the use of the BMS global user exits refer to the CICS Customization Guide.
The MUSTFILL, MUSTENTER and TRIGGER specifications are valid only for terminals that support the field validation extended attribute, otherwise they are ignored. The USEREXIT specification applies to all 3270 devices.

Note: The USEREXIT specification is totally unconnected with the field validation extended attribute as defined in the 3270 datastream architecture.

VTAB

specifies one or more tab positions for use with interactive and batch logical units and SCS printers having vertical forms control.
A partition set contains one or more partitions. Each partition is defined by coding a partition definition macro.

“partn” is a partition name (1–2 characters). It allows you to refer to the partition in your application programs.

Every partition in a partition set must have a different name. Only the error partition can be unnamed (see ATTRB=ERROR operand).

Partitions are defined by coding the macros DFHPSD (partition set definition) and DFHPDI (partition definition). Each partition definition must be part of a partition set definition.

Operands

ATTRB

specifies that error messages are to be directed to this partition whenever possible. The partition is cleared before an error message is displayed. The RDO TYPETERM option ERRHILIGHT is honored, but the LASTLINE option is ignored.

BUFSZE(lines,columns)

specifies the size of the presentation space for the partition. Device limitations mean that the “columns” value must be equal to the “columns” value specified by the VIEWSZE operand. The “lines” value can be greater than or, by default, equal to the value specified by the VIEWSZE operand. A greater lines value implies that the target terminal supports vertical scrolling.

CHARSZE(vpels,hpels)

specifies the size of the character cell to be reserved for each character displayed in a partition. You specify the size as numbers of vertical picture elements (vpels) and numbers of horizontal picture elements (hpels). You can specify this operand on either the DFHPSD macro only, or on both the DFHPSD and DFHPDI macros. The values specified in the DFHPSD become the defaults for all partitions in the partition set. You can override these defaults for individual partitions by coding CHARSZE in the DFHPDI macro.

MAPSFX(mapset-suffix)

specifies the partition’s 1-character mapset suffix. BMS uses the suffix to select mapset versions in the same way as for the RDO option ALTSUFFIX. If this operand is omitted, a suffix L is assumed if the “columns” value of the BUFSZE operand is less than or equal to 40; otherwise M is assumed.

VIEWPOS(lines,columns)

specifies the position of the top left-hand corner of this partition’s viewport. You specify the position in numbers of lines and numbers of columns.

The DFHPDI macro checks that viewports do not overlap. If you have coded the RDO TYPETERM ALTSCREEN option, or the ALTSCRN operand of the DFHPSD macro, DFHPDI also checks that all viewports fit within the usable area of the terminal screen.

VIEWSZE(lines,columns)

specifies the size, in lines and columns, of the partition’s viewport. The DFHPDI macro checks that viewports do not overlap. If you code the RDO TYPETERM ALTSCREEN option, or the ALTSCRN operand of the DFHPSD macro partition set definition macro, DFHPDI checks that the partitions all fit within the usable area of the display screen.

Note: The information given here on positioning viewports is necessarily brief. For more information you should consult the component description for the device you are using.
DFHPSD

Partition set definition.

```
partnset DFHPSD
  SUFX=user-suffix
  ALTSCRN=(lines,columns)
  CHARSZ=(vpels,hpels)
```

Each partition set definition contains a single DFHPSD macro followed by one or more DFHPDI macros, and ending with a DFHPSD TYPE=FINAL partition set definition macro.

“partnset” is a partition set name (1–6 characters).

Partitions are defined by coding the macros DFHPSD (partition set definition) and DFHPDI (partition definition). Each partition definition must be part of a partition set definition.

Ending DFHPSD

```
[partnset] DFHPSD TYPE=FINAL
```

The PARTNSET name (if specified) must match that specified on the DFHPSD macro that started the partition set definition.

Operands

ALTSCRN(lines,columns)

specifies the size, in characters, of the usable area of the target terminal. This is normally the same as the RDO TYPETERM option ALTSCREEN. You use ALTSCRN to ensure that the viewports of partitions within a partition set fit into the usable area of the screen.

CHARSZ=(vpels,hpels)

specifies the size of the character cell to be reserved for each character displayed in a partition. You specify the size as numbers of vertical picture elements (vpels) and numbers of horizontal picture elements (hpels). You can specify this operand on either the DFHPSD macro only, or on both the DFHPSD and DFHPDI macros. The values specified in this operand become the defaults for all partitions in the partition set. You can override this default for individual partitions by coding CHARSZE in the DFHPDI macro.

SUFX(user-suffix)

specifies a 1-character user suffix for this version of the partition set. It allows different versions of a partition set to be associated with different terminals. When the partition set is to be loaded, CICS looks for a version whose suffix matches the RDO TYPETERM option ALTSUFFIX. If it cannot find the correct partition set version, it loads a version with a default suffix (M or L). If it cannot find a suffixed version either, it loads an unsuffixed one. If it cannot find this, it abends with APCT.
Index

Numerics
16MB line 140
2260 Display Station
 CONVERSE command 56
 RECEIVE command 240
 SEND command 286
2265 Display Station
 CONVERSE command 56
 RECEIVE command 240
 SEND command 286
2741 Communication Terminal
 CONVERSE command 57
 RECEIVE command 240
 SEND command 286
2770 Data Communication System
 CONVERSE command 55, 58
 RECEIVE command 239
 SEND command 285
2780 Data Transmission Terminal
 CONVERSE command 55, 58
 RECEIVE command 239
 SEND command 285
2980 General Banking Terminal System
 DFH2980 structure 242
 output control 241
 output to common buffer 242
 passbook control 241
 RECEIVE/SEND commands 241, 287
3270 Information Display System
 (BTAM or TCAM supported) 59, 243, 287
 (BTAM supported) 155, 178
 logical unit 45, 156, 231, 274
3600 Finance Communication System
 3601 logical unit 45, 232, 275
 3614 logical unit 46, 233, 275
 CONVERSE command 59
 pipeline logical units 274
 RECEIVE command 243
 SEND command 288
3630 Plant Communication System
 RECEIVE command 232
 SEND command 275
3650 Host Command Processor
 CONVERSE command 48
3650 Logical Units
 RECEIVE command 233
3650 Store System
 host conversational
 LU 3270 276
 LU 3653 277
 interpreter logical unit 46, 163, 168, 233, 276
3650/3680 Full-function Logical Unit
 RECEIVE command 235
 SEND command 279
3650/3680 Store System
 host command processor LU 277
3660 Supermarket Scanning System
 CONVERSE command 55
 RECEIVE command 239
 SEND command 285
3680 Host Command Processor
 CONVERSE command 48
3680 Programmable Store System
 host command processor LU 277
3735 Programmable Buffered Terminal 61, 244, 288
3740 Data Entry System 61, 161, 162, 244
3767 Communication Terminal
 interactive logical unit 48, 234, 278
3770 Data Communication System
 batch logical unit 49, 234, 278
3770 Full Function Logical Unit
 RECEIVE command 235
 SEND command 279
3770 interactive logical unit
 RECEIVE command 234
 SEND command 278
3780 Data Communication Terminal
 CONVERSE command 55
 RECEIVE command 239
 SEND command 285
3790 Communication System
 3270-display logical unit 50, 245, 280
 Full Function Logical Unit 49
 full-function logical unit 235, 279
 SCS printer logical unit 279
4700 Finance Communication System
 CONVERSE command 59
 RECEIVE command 243
 SEND command 288

A
ABCODE option
 ABEND command 13
 ASSIGN command 24
ABDUMP option
 ASSIGN command 24
ABEND AICA timeout 6
ABEND command 13
ABEND exit, reactivating 142
abend support commands 9
abnormal termination task 142
ABPROGRAM option
 ASSIGN command 24

© Copyright IBM Corp. 1989, 1999
absolute expressions 4
ABSTIME option
 ASKTIME command 22
 FORMATTIME command 109
access to system information
 ADDRESS command 14
 ADDRESS SET command 16
 ASSIGN command 23
CICS storage areas 14, 16
ACCUM option
 SEND CONTROL command 292
 SEND MAP command 296
 SEND TEXT command 305
ACEE option
 ADDRESS command 14
ACTION option
 WRITE OPERATOR command 378
ACTIVITY option
 ASSIGN command 24
ACTIVITYID option
 ASSIGN command 24
ACTPARTN option
 SEND CONTROL command 292
 SEND MAP command 296
 SEND TEXT command 305
ADDRESS command 14
ADDRESS SET command 16
address, cursor 407
ADS descriptor 427
ADS value
 DFHMSD 445
ADSL value
 DFHMSD 445
AFTER option
 POST command 196
 ROUTE command 268
 START command 330
AID option
 RECEIVE MAPI MAPPINGDEV command 250
ALARM option
 SEND CONTROL command 292
 SEND MAP command 296
 SEND MAP MAPPINGDEV command 300
 SEND TEXT command 305
 SEND TEXT NOEDIT command 311
ALARM value
 DFHMDI 439
 DFHMSD 445
ALIGNED attribute
 PL/I 4
ALL option
 SEND PAGE command 302
ALLOCATE (APPC) command 17
ALLOCATE (LUTYPE6.1) command 19
ALLOCATE (MRO) command 21
ALLOCERR condition
 SPOOLCLOSE command 317
 SPOOLOPEN INPUT command 319
 SPOOLOPEN OUTPUT command 322
 SPOOLREAD command 324
 SPOOLWRITE command 326
ALTER option
 QUERY SECURITY command 203
ALTERNATE option
 CONVERSE (non-VTAM) command 62
 CONVERSE (VTAM) command 51
 SEND (non-VTAM) command 289
 SEND (VTAM) command 281
 SEND CONTROL command 293
 SEND MAP command 296
 SEND TEXT command 306
 SEND TEXT NOEDIT command 311
ALTSCRN operand
 DFHPDS 451
ALTSCRNHT option
 ASSIGN command 24
ALTSCRNWD option
 ASSIGN command 24
ANYKEY option
 HANDLE AID command 144
APLKBYD option
 ASSIGN command 24
APLTEXT option
 ASSIGN command 24
APPC basic conversations
 commands 9
APPC logical unit
 acquiring session to 17
 initiating conversation with 40
 returning mapped sessions to CICS 113
 sending and receiving 42
APPC mapped conversations
 abending 149
 commands 9
 ensuring transmission of accumulated data 349
 extracting attributes of 99
 informing partner of error 167
 issuing a positive response 154
 receiving data 229
 requesting change of direction 181
 retrieving values from attach header 104
 returning sessions to CICS 113
 sending data 271
application performance, monitoring 192
APPLID option
 ASSIGN command 24
argument values
 assembler language 4
 C 2
 COBOL 2
 PL/I 3
ASA option
 SPOOLOPEN OUTPUT command 321
ASIS option
 CONVERSE (non-VTAM) command 62
 CONVERSE (VTAM) command 51
 RECEIVE (non-VTAM) command 246
 RECEIVE (VTAM) command 236
 RECEIVE MAP command 248
 RECEIVE PARTN command 252
 SEND (non-VTAM) command 289
ASKIP value
 DFHMDF 431
ASKTIME command 22
ASRAINT option
 ASSIGN command 24
ASRAJ option
 ASSIGN command 24
ASRAPSW option
 ASSIGN command 25
ASRARWS option
 ASSIGN command 25
ASRASTG option
 ASSIGN command 25
assembler language
 argument values 4
 LENGTH option default 4
 program exit 400
 register contents 400
 translated code 400
ASSIGN command 23
asynchronous interrupt 404
AT option
 DOCUMENT INSERT command 82
 POST command 197
 ROUTE command 268
 START command 330
attach
 start a task 333
ATTACHID option
 BUILD ATTACH (LTYPE6.1) command 32
 BUILD ATTACH (MRO) command 34
 CONVERSE (non-VTAM) command 62
 CONVERSE (VTAM) command 51
 EXTRACT ATTACH (LTYPE6.1) command 95
 EXTRACT ATTACH (MRO) command 97
 SEND (non-VTAM) command 289
 SEND (VTAM) command 281
attention identifier (AID) 144
ATTRB operand
 DFHMDF 431
 DFHPDI 450
attributes
 control character list, DFHBMSCA 421
authentication commands 9
AUTOPAGE option
 SEND PAGE command 302
AUXILIARY option
 WRITEQ TS command 382

B
back out to a syncpoint 342
BASE operand
 DFHMSD 444
BASE value
 DFHMDF 435
 DFHMDI 441
 DFHMSD 447
basic mapping support (BMS)
 ADS descriptor 427
 commands 10
 completing a logical message 302
 deleting a logical message 199
 determining input partition 252
 field definition macro 427, 431
full BMS
 RECEIVE MAP command 248
 RECEIVE PARTN command 252
 SEND CONTROL command 292
 SEND MAP command 295
 SEND PAGE 302
 SEND PARTNSET 304
 SEND TEXT command 305
 SEND TEXT MAPPED 309
 SEND TEXT NOEDIT 311
full-function BMS
 PURGE MESSAGE 199
 map definition macro 427, 438
 mapping input data 248
 mapping input data with MAPPINGDEV 250
 mapset definition macro 427, 444
minimum BMS
 RECEIVE MAP command 248
 RECEIVE MAP MAPPINGDEV command 250
 SEND CONTROL command 292
 SEND MAP command 295
 SEND MAP MAPPINGDEV command 300
partition definition macro 428, 450
partition set definition macro 428, 451
related constants 421
routing a logical message 268
sending previously mapped data 309
sending user-defined data stream 311
standard BMS
 RECEIVE MAP command 248
 RECEIVE PARTN command 252
 SEND CONTROL command 292
 SEND MAP command 295
 SEND PARTNSET 304
 SEND TEXT command 305

Index 455
batch data interchange (BDI)
 add record to data set 152
 commands 10
 conditions 169
 delete a record from data set 164
 read record from data set 174
 request next record number 169
 send data to output device 179
 terminate data set 150, 159
 update a record in data set 176
 wait for function completion 183
batch logical unit, 3770 49, 234, 278
batch mode application, 3740 61, 244, 289
BELOW option
 GETMAIN command 140
BIF DEEDIT command 31
BINARY option
 DOCUMENT INSERT command 82
BLANK value
 DFHMDF 433
BLINK value
 DFHMDF 433
 DFHMDI 440
 DFHMSD 446
BLOCK value
 DFHMDI 439
 DFHMSD 445
BOOKMARK option
 DOCUMENT INSERT command 82
BOTTOM value
 DFHMDI 440
BRDATA option
 START BREXIT command 334
BRDATALENGTH option
 START BREXIT command 334
BREXIT option
 START BREXIT command 334
bridge (3270)
 start a task 334
BRIDGE option
 ASSIGN command 25
browse operation
 ending 89
 read next record 212
 read previous record 219
 reset starting point 255
 starting 336
BRT value
 DFHMDF 431
BTAM programmable terminals 404
BTRANS option
 ASSIGN command 25
BUFFER option
 GDS RECEIVE command 131
 RECEIVE (non-VTAM) command 246
 RECEIVE (VTAM) command 236
BUFSZE operand
 DFHPDI 450
BUILD ATTACH (LUTYPE6.1) command 32
BUILD ATTACH (MRO) command 34
built-in functions
 commands 10
C
C language
 ADDRESS COMMAREA 14
 ADDRESS EIB 14
 argument values 2
 LENGTH option default 3
 translated code 399
CADDRLENGTH option
 EXTRACT TCPIP command 106
CANCEL command 36
CANCEL option
 ABEND command 13
 HANDLE ABEND command 142
CARD option
 ISSUE ABORT command 150
 ISSUE END command 159
 ISSUE SEND command 179
 ISSUE WAIT command 183
CASE operand
 DFHMDF 432
CBIDERR condition
 ALLOCATE (APPC) command 17
 ALLOCATE (LUTYPE6.1) command 19
 CONVERSE (non-VTAM) command 63
 CONVERSE (VTAM) command 52
 EXTRACT ATTACH (LUTYPE6.1) command 96
 EXTRACT ATTACH (MRO) command 98
 SEND (non-VTAM) command 290
 SEND (VTAM) command 282
CBUFF option
 SEND (non-VTAM) command 289
CERTIFICATE option
 EXTRACT CERTIFICATE command 101
CHANGE PASSWORD command 38
CHANGE TASK command 39
CHANGED condition
 DELETE command 70
 REWRITE command 265
CHANGETIME option
 VERIFY PASSWORD command 347
CHARSZE operand
 DFHPDI 450
 DFHPSD 451
CICS Web Interface (CWI) commands
 DOCUMENT CREATE 80
 DOCUMENT INSERT 82
 DOCUMENT RETRIEVE 84
 DOCUMENT SET 85
CICS Web Interface (CWI) commands (continued)

- EXTRACT CERTIFICATE 101
- WEB READ 362
- WEB READNEXT 363
- WEB RECEIVE 364
- WEB RETRIEVE 366
- WEB SEND 367
- WEB STARTBROWSE 368
- WEB WRITE 369

CICSDATAKEY option

- GETMAIN command 140

CLASS option

- SPOOLOPEN INPUT command 319
- SPOOLOPEN OUTPUT command 321

CLEAR option

- HANDLE AID command 144

client requests

- extracting information 101, 361

CLIENTADDR option

- EXTRACT TCP/IP command 106

CLIENTADDRNU option

- EXTRACT TCP/IP command 106

CLIENTNAME option

- EXTRACT TCP/IP command 106

CLNTCODEPAGE option

- DOCUMENT RETRIEVE command 84
- WEB RECEIVE command 364
- WEB SEND command 367

CLRPARTN option

- HANDLE AID command 144

CMDSEC option

- ASSIGN command 25

CNAMELENGTH option

- EXTRACT TCP/IP command 106

CNOTCOMPL option

- SEND (non-VTAM) command 289
- SEND (VTAM) command 281

COBOL

- argument values 2
- translated code 399

CODEREG operand

- 401

COLOR operand

- 401
- DFHMDF 432
- DFHMDI 438
- DFHMSD 444

COLOR option

- ASSIGN command 25

COLUMN operand

- DFHMDI 438

column value

- DFHMDI 441

command language translator

- translated code 400

commands

- format, arguments 1
- scheduling 11
- security 11
- spool 11
- TCP/IP 11
- temporary storage control 11

COMMAREA option

- ADDRESS command 14
- LINK command 187
- RETURN command 261
- XCTL command 385

common buffer, output to, 2980 242

common programming interface communications (CPI communications)

- 411

COMMONNAME option

- EXTRACT CERTIFICATE command 101

COMMONNAMLEN option

- EXTRACT CERTIFICATE command 101

COMPAREMAX option

- GET COUNTER command 136
- GET DCOUNTER command 136
- UPDATE COUNTER command 345
- UPDATE DCOUNTER command 345

COMPAREMIN option

- GET COUNTER command 136
- GET DCOUNTER command 136
- UPDATE COUNTER command 345
- UPDATE DCOUNTER command 345

COMPLETE option

- DUMP TRANSACTION command 86

CONFIRM option

- GDS SEND command 133
- SEND (VTAM) command 281

CONNECT PROCESS command

- 40

CONSISTENT option

- READ command 206
- READNEXT command 213
- READPREV command 220

CONSOLE option

- ISSUE ABORT command 150
- ISSUE END command 159
- ISSUE SEND command 179
- ISSUE WAIT command 183

console support commands

- 10

constants

- AID values, DFHAID 425
- attribute values, DFHBMSCA 421
- for 3270 attributes 421
- for examining EIBAID field 425
- for MSR control values 423
- for printer format controls 421
- MSR control, DFHtdex read 423
- printer control values, DFHBMSCA 421

CONTROL option

- QUERY SECURITY command 203

Index 457
CONVDATA option
GDS CONNECT PROCESS command 121
GDS EXTRACT ATTRIBUTES command 123
GDS FREE command 125
GDS ISSUE ABEND command 126
GDS ISSUE CONFIRMATION command 127
GDS ISSUE ERROR command 128
GDS ISSUE PREPARE command 129
GDS ISSUE SIGNAL command 130
GDS RECEIVE command 131
GDS SEND command 133
GDS WAIT command 135
CONVERSE (2260) command 56
CONVERSE (2741) command 57
CONVERSE (2770) command 58
CONVERSE (2780) command 58
CONVERSE (3270 display) command 59
CONVERSE (3270 logical) command 45
CONVERSE (3600 BTAM) command 59
CONVERSE (3600-3601) command 45
CONVERSE (3650 interpreter) command 46
CONVERSE (3650-3270) command 47
CONVERSE (3650-3653) command 47
CONVERSE (3650-3680) command 48
CONVERSE (3735) command 61
CONVERSE (3740) command 61
CONVERSE (3767) command 48
CONVERSE (3770) command 49
CONVERSE (3790 3270-display) command 50
CONVERSE (APPC) command 42
CONVERSE (LUTYPE6.1) command 43
CONVERSE (LUTYPE2/LUTYPE3) command 43
CONVERSE (LUTYPE4) command 43
CONVERSE (LUTYPE6.1) command 44
CONVERSE (MRO) command 54
CONVERSE (non-VTAM default) command 54
CONVERSE (SCS) command 44
CONVERSE (System/3) command 55
CONVERSE (System/7) command 55
CONVERSE (VTAM default) command 42
CONVERSE option
ISSUE LOAD command 168
converse with terminal or LU 404
CONVID option (continued)
GDS ALLOCATE command 118
GDS CONNECT PROCESS command 121
GDS EXTRACT ATTRIBUTES command 123
GDS EXTRACT PROCESS command 124
GDS FREE command 125
GDS ISSUE ABEND command 126
GDS ISSUE CONFIRMATION command 127
GDS ISSUE ERROR command 128
GDS ISSUE PREPARE command 129
GDS ISSUE SIGNAL command 130
GDS RECEIVE command 131
GDS SEND command 133
GDS WAIT command 135
GDS ISSUE LOAD command 168
ISSUE ABEND command 149
ISSUE CONFIRMATION command 154
ISSUE ERROR command 167
ISSUE PREPARE command 171
ISSUE SIGNAL (APPC) command 181
ISSUE SIGNAL (LUTYPE6.1) command 182
POINT command 194
RECEIVE (VTAM) command 236
SEND (VTAM) command 281
WAIT CONVID command 349
WAIT TERMINAL command 357
copy displayed information 406
copybooks
DFHAID 425
DFHBMSCA 421
DFHEIBLK 401
DFHMSRCA 423
COUNTER option
DEFINE COUNTER command 65
DEFINE DCOUNTER command 65
DELETE COUNTER command 74
GET COUNTER command 136
QUERY COUNTER command 201
REWIND COUNTER command 263
UPDATE COUNTER command 345
COUNTRY option
EXTRACT CERTIFICATE command 101
COUNTRYLEN option
EXTRACT CERTIFICATE command 101
CPI communications (SAA) 411
create a journal record 185, 375
CSMT transaction
resend message destination 60
CSTL transaction
resend message destination 60
CTLCHAR option
CONVERSE (non-VTAM) command 62
CONVERSE (VTAM) command 51
ISSUE COPY (3270 display) command 155
ISSUE COPY (3270 logical) command 156
SEND (non-VTAM) command 289
SEND (VTAM) command 281
CTRL operand
DFHMID 438
DFHMSD 444

CURRENT option
SEND PAGE command 302

CURSLOC operand
DFHMID 439
DFHMSD 445
cursor address 407

CURSOR option
RECEIVE MAP MAPPINGDEV command 250
SEND CONTROL command 293
SEND MAP command 296
SEND MAP MAPPINGDEV command 300
SEND TEXT command 306
cursor position
terminal control 407

CVDA (CICS-value data area)
argument values 2
command format 2
passing and receiving 5
values in alphabetic order 417
values in numeric order 417

CVDA options
ACTION
WRITE OPERATOR command 378
ALTER
QUERY SECURITY command 203
ASRAKEY
ASSIGN command 24
ASRASPC
ASSIGN command 25
CONTROL
QUERY SECURITY command 203
LOGMESSAGE
QUERY SECURITY command 203
MAXLIFETIME
DEQ 78
ENQ 91
PURGEABILITY
WAIT EXTERNAL 351
WAITCICS 358
READ
QUERY SECURITY command 203
STATE 52, 63, 237, 247, 282, 290
ALLOCATE (APPC) 17
ALLOCATE (MRO) 21
CONNECT PROCESS 40
EXTRACT ATTRIBUTES (APPC) 99
EXTRACT ATTRIBUTES (MRO) 100
FREE (APPC) 113
FREE (MRO) 115
GDS ALLOCATE 118
GDS CONNECT PROCESS 121
GDS EXTRACT ATTRIBUTES 123
GDS FREE 125
GDS issue ABEND 126

CVDA options (continued)
STATE (continued)
GDS ISSUE CONFIRMATION 127
GDS ISSUE ERROR 128
GDS ISSUE PREPARE 129
GDS ISSUE SIGNAL 130
GDS RECEIVE 132
GDS SEND 133
GDS WAIT 135
ISSUE ABEND command 149
ISSUE CONFIRMATION 154
ISSUE ERROR 167
ISSUE PREPARE 171
ISSUE SIGNAL (APPC) 181
WAIT CONVID 349

UPDATE
QUERY SECURITY command 204

CVDA values
ALLOCATED
ALLOCATE (APPC) 17
ALLOCATE (MRO) 21
CONNECT PROCESS 40
EXTRACT ATTRIBUTES (APPC) 99
EXTRACT ATTRIBUTES (MRO) 100
FREE (APPC) 113
FREE (MRO) 115
GDS ALLOCATE 118
GDS CONNECT PROCESS 121
GDS EXTRACT ATTRIBUTES 123
GDS FREE 125
GDS ISSUE ABEND 126
GDS ISSUE CONFIRMATION 127
GDS ISSUE ERROR 128
GDS ISSUE PREPARE 129
GDS ISSUE SIGNAL 130
GDS RECEIVE 132
GDS SEND 133
GDS WAIT 135
ISSUE ABEND command 149
ISSUE CONFIRMATION 154
ISSUE ERROR 167
ISSUE PREPARE 171
ISSUE SIGNAL (APPC) 181
RECEIVE (APPC) command 237
RECEIVE (MRO) command 247
SEND (APPC) command 282
SEND (MRO) command 290
WAIT CONVID 349

ALTERABLE
QUERY SECURITY command 203

BASESPACE
ASSIGN command 25
CICSEXECKEY
ASSIGN command 24
CONFFREE
CONNECT PROCESS 40
EXTRACT ATTRIBUTES (APPC) 99
CONFFREE (continued)
FREE (APPC) 113
GDS ALLOCATE 118
GDS CONNECT PROCESS 121
GDS EXTRACT ATTRIBUTES 123
GDS FREE 125
GDS ISSUE ABEND 126
GDS ISSUE CONFIRMATION 127
GDS ISSUE ERROR 128
GDS ISSUE PREPARE 129
GDS ISSUE SIGNAL 130
GDS RECEIVE 132
GDS SEND 133
GDS WAIT 135
ISSUE ABEND command 149
ISSUE CONFIRMATION 154
ISSUE ERROR 167
ISSUE PREPARE 171
ISSUE SIGNAL (APPC) 181
RECEIVE (APPC) command 237
SEND (APPC) command 282
WAIT CONVID 349

CONFRECEIVE
CONNECT PROCESS 40
EXTRACT ATTRIBUTES (APPC) 99
FREE (APPC) 113
GDS ALLOCATE 118
GDS CONNECT PROCESS 121
GDS EXTRACT ATTRIBUTES 123
GDS FREE 125
GDS ISSUE ABEND 126
GDS ISSUE CONFIRMATION 127
GDS ISSUE ERROR 128
GDS ISSUE PREPARE 129
GDS ISSUE SIGNAL 130
GDS RECEIVE 132
GDS SEND 133
GDS WAIT 135
ISSUE ABEND command 149
ISSUE CONFIRMATION 154
ISSUE ERROR 167
ISSUE PREPARE 171
ISSUE SIGNAL (APPC) 181
RECEIVE (APPC) command 237
SEND (APPC) command 282
WAIT CONVID 349

CONFSEND (continued)
CONNECT PROCESS 40
EXTRACT ATTRIBUTES (APPC) 99
FREE (APPC) 113
GDS ALLOCATE 118
GDS CONNECT PROCESS 121
GDS EXTRACT ATTRIBUTES 123
GDS FREE 125
GDS ISSUE ABEND 126
GDS ISSUE CONFIRMATION 127
GDS ISSUE ERROR 128
GDS ISSUE PREPARE 129
GDS ISSUE SIGNAL 130
GDS RECEIVE 132
GDS SEND 133
GDS WAIT 135
ISSUE ABEND command 149
ISSUE CONFIRMATION 154
ISSUE ERROR 167
ISSUE PREPARE 171
ISSUE SIGNAL (APPC) 181
RECEIVE (APPC) command 237
SEND (APPC) command 282
WAIT CONVID 349
CRITICAL
WRITE OPERATOR command 378
CTRLABLE
QUERY SECURITY command 203
EVENTUAL
WRITE OPERATOR command 378
FREE
CONNECT PROCESS 40
EXTRACT ATTRIBUTES (APPC) 99
EXTRACT ATTRIBUTES (MRO) 100
FREE (APPC) 113
FREE (MRO) 115
GDS ALLOCATE 118
GDS CONNECT PROCESS 121
GDS EXTRACT ATTRIBUTES 123
GDS FREE 125
GDS ISSUE ABEND 126
GDS ISSUE CONFIRMATION 127
GDS ISSUE ERROR 128
GDS ISSUE PREPARE 129
GDS ISSUE SIGNAL 130
GDS RECEIVE 132
GDS SEND 133
GDS WAIT 135
ISSUE ABEND command 149
ISSUE CONFIRMATION 154
ISSUE ERROR 167
ISSUE PREPARE 171
ISSUE SIGNAL (APPC) 181
RECEIVE (APPC) command 237
SEND (APPC) command 282
SEND (MRO) command 290
WAIT CONVID 349
IMMEDIATE
WRITE OPERATOR command 378
LOG
QUERY SECURITY command 203
NOLOG
QUERY SECURITY command 203
CVDA values (continued)

NONCICS
 ASSIGN command 24
NOTALTERABLE
 QUERY SECURITY command 203
NOTAPPLIC
 ASSIGN command 25
NOTCTRLABLE
 QUERY SECURITY command 203
NOTPURGEABLE
 WAIT EXTERNAL 351
 WAITCICS 358
NOTREADABLE
 QUERY SECURITY command 203
NOTUPDATABLE
 QUERY SECURITY command 204
PENDFREE
 CONNECT PROCESS 40
 EXTRACT ATTRIBUTES (APPC) 99
 EXTRACT ATTRIBUTES (MRO) 100
 FREE (APPC) 113
 FREE (MRO) 115
 GDS ALLOCATE 118
 GDS CONNECT PROCESS 121
 GDS EXTRACT ATTRIBUTES 123
 GDS FREE 125
 GDS ISSUE ABEND 126
 GDS ISSUE CONFIRMATION 127
 GDS ISSUE ERROR 128
 GDS ISSUE PREPARE 129
 GDS ISSUE SIGNAL 130
 GDS RECEIVE 132
 GDS SEND 133
 GDS WAIT 135
 ISSUE ABEND command 149
 ISSUE CONFIRMATION 154
 ISSUE ERROR 167
 ISSUE PREPARE 171
 ISSUE SIGNAL (APPC) 181
 RECEIVE (APPC) command 237
 RECEIVE (MRO) command 247
 SEND (APPC) command 282
 SEND (MRO) command 290
 WAIT CONVID 349
PENDRECEIVE
 CONNECT PROCESS 40
 EXTRACT ATTRIBUTES (APPC) 99
 FREE (APPC) 113
 GDS ALLOCATE 118
 GDS CONNECT PROCESS 121
 GDS EXTRACT ATTRIBUTES 123
 GDS FREE 125
 GDS ISSUE ABEND 126
 GDS ISSUE CONFIRMATION 127
 GDS ISSUE ERROR 128
 GDS ISSUE PREPARE 129
 GDS ISSUE SIGNAL 130
 ISSUE ABEND command 149
 ISSUE CONFIRMATION 154
 ISSUE ERROR 167
 ISSUE PREPARE 171
 ISSUE SIGNAL (APPC) 181
 RECEIVE (APPC) command 237
 RECEIVE (MRO) command 247
 SEND (APPC) command 282
 SEND (MRO) command 290
 WAIT CONVID 349
ROLLBACK
 CONNECT PROCESS 40
 CONVERSE command (MRO) 63
 EXTRACT ATTRIBUTES (APPC) 99
 EXTRACT ATTRIBUTES (MRO) 100
 FREE (APPC) 113
 FREE (MRO) 115
 GDS ALLOCATE 118
 GDS CONNECT PROCESS 121
 GDS EXTRACT ATTRIBUTES 123
 GDS FREE 125
 GDS ISSUE ABEND 126
 GDS ISSUE CONFIRMATION 127
 GDS ISSUE ERROR 128
 GDS ISSUE PREPARE 129
 GDS ISSUE SIGNAL 130
 ISSUE ABEND command 149
 ISSUE CONFIRMATION 154
 ISSUE ERROR 167
 ISSUE PREPARE 171
 ISSUE SIGNAL (APPC) 181
 RECEIVE (APPC) command 237
 RECEIVE (MRO) command 247
 SEND (APPC) command 282
 SEND (MRO) command 290
 WAIT CONVID 349
CVDA values (continued)
ROLLBACK (continued)
 GDS FREE 125
 GDS ISSUE ABEND 126
 GDS ISSUE CONFIRMATION 127
 GDS ISSUE ERROR 128
 GDS ISSUE PREPARE 129
 GDS ISSUE SIGNAL 130
 GDS RECEIVE 132
 GDS SEND 133
 GDS WAIT 135
 ISSUE ABEND command 149
 ISSUE CONFIRMATION 154
 ISSUE ERROR 167
 ISSUE PREPARE 171
 ISSUE SIGNAL (APPC) 181
 RECEIVE (APPC) command 237
 RECEIVE (MRO) command 247
 SEND (APPC) command 282
 SEND (MRO) command 290
 WAIT CONVID 349
SEND
 CONNECT PROCESS 40
 CONVERSE command (MRO) 63
 EXTRACT ATTRIBUTES (APPC) 99
 EXTRACT ATTRIBUTES (MRO) 100
 FREE (APPC) 113
 FREE (MRO) 115
 GDS ALLOCATE 118
 GDS CONNECT PROCESS 121
 GDS EXTRACT ATTRIBUTES 123
 GDS FREE 125
 GDS ISSUE ABEND 126
 GDS ISSUE CONFIRMATION 127
 GDS ISSUE ERROR 128
 GDS ISSUE PREPARE 129
 GDS ISSUE SIGNAL 130
 GDS RECEIVE 132
 GDS SEND 133
 GDS WAIT 135
 ISSUE ABEND command 149
 ISSUE CONFIRMATION 154
 ISSUE ERROR 167
 ISSUE PREPARE 171
 ISSUE SIGNAL (APPC) 181
 RECEIVE (APPC) command 237
 RECEIVE (MRO) command 247
 SEND (APPC) command 282
 SEND (MRO) command 290
 WAIT CONVID 349
SYNCRECEIVE
 CONNECT PROCESS 40
 CONVERSE command (MRO) 63
 EXTRACT ATTRIBUTES (APPC) 99
 EXTRACT ATTRIBUTES (MRO) 100
 FREE (APPC) 113
 FREE (MRO) 115
 GDS ALLOCATE 118
 GDS CONNECT PROCESS 121
 GDS EXTRACT ATTRIBUTES 123
 GDS FREE 125
 GDS ISSUE ABEND 126
 GDS ISSUE CONFIRMATION 127
 GDS ISSUE ERROR 128
 GDS ISSUE PREPARE 129
 GDS ISSUE SIGNAL 130
 GDS RECEIVE 132
 GDS SEND 133
 GDS WAIT 135
 ISSUE ABEND command 149
 ISSUE CONFIRMATION 154
 ISSUE ERROR 167
 ISSUE PREPARE 171
 ISSUE SIGNAL (APPC) 181
 RECEIVE (APPC) command 237
 RECEIVE (MRO) command 247
 SEND (APPC) command 282
 SEND (MRO) command 290
 WAIT CONVID 349
SYNCSEND
 CONNECT PROCESS 40
CVDA values (continued)

SYNCSEND (continued)

CONVERSE command (MRO) 63
EXTRACT ATTRIBUTES (APPC) 99
EXTRACT ATTRIBUTES (MRO) 100
FREE (APPC) 113
FREE (MRO) 115
GDS ALLOCATE 118
GDS CONNECT PROCESS 121
GDS EXTRACT ATTRIBUTES 123
GDS FREE 125
GDS ISSUE ABEND 126
GDS ISSUE CONFIRMATION 127
GDS ISSUE ERROR 128
GDS ISSUE PREPARE 129
GDS ISSUE SIGNAL 130
GDS RECEIVE 132
GDS SEND 133
GDS WAIT 135
ISSUE ABEND command 149
ISSUE CONFIRMATION 154
ISSUE ERROR 167
ISSUE PREPARE 171
ISSUE SIGNAL (APPC) 181
RECEIVE (APPC) command 237
RECEIVE (MRO) command 247
SEND (APPC) command 282
SEND (MRO) command 290
WAIT CONVID 349

TASK
DEQ 78
ENQ 92

UOW
DEQ 78
ENQ 92

UPDATABLE
QUERY SECURITY command 204
USEREXECKEY
ASSIGN command 24
CWA option
ADDRESS command 14
CWALENG option
ASSIGN command 25

D

data
passing to new tasks 330

DATA operand
DFHMDI 439
DFHMSD 445

DATA option
FREE MAIN command 116

data sets
add records to 152
interrogating 173

data (continued)

processing termination 159
read records from 174
update records 176

data tables
CICS/user-maintained/coupling facility
DELETE command 69
ENDBR command 89
READ command 205
READNEXT command 212
READPREV command 219
RESETBR command 255
REWRITE command 265
STARTBR command 336
UNLOCK command 343
WRITE command 370
data to output device, sending 179
data-area argument
CICS command format 2
definition 1
data-value argument
CICS command format 2
definition 1
data, deleting
file control records 69
named counter 74
temporary storage queues 77
transient data queues 76
DATA1 option
MONITOR command 192
DATA2 option
MONITOR command 192

DATA LENGTH option
LINK command 187
DATAONLY option
DOCUMENT RETRIEVE command 84
SEND MAP command 296
SEND MAP MAPPINGDEV command 300

DATA POINTER option
FREE MAIN command 116

DATAREG operand 401
DATASTR option
BUILD ATTACH (LUTYPE6.1) command 32
BUILD ATTACH (MRO) command 34
EXTRACT ATTACH (LUTYPE6.1) command 95
EXTRACT ATTACH (MRO) command 97

DATE option
FORMATTIME command 109
DATE FORM option
FORMATTIME command 109

DATESEP option
FORMATTIME command 109

DAY COUNT option
FORMATTIME command 109

DAYOFMONTH option
FORMATTIME command 110
DAYOFWEEK option
 FORMATTIME command 110
DAYLEFT option
 VERIFY PASSWORD command 347
DCOUNTER option
 DELETE DCOUNTER command 74
 GET DCOUNTER command 137
 QUERY DCOUNTER command 201
 REWIND DCOUNTER command 263
 UPDATE DCOUNTER command 345
DCT option
 DUMP TRANSACTION command 86
DDMMYY option
 FORMATTIME command 110
DDMMYYYY option
 FORMATTIME command 110
DEBKEY option
 READ command 206
 STARTBR command 336
DEBREC option
 READ command 206
 STARTBR command 336
DEFAULT option
 CONVERSE (non-VTAM) command 62
 CONVERSE (VTAM) command 51
 SEND (non-VTAM) command 289
 SEND (VTAM) command 281
 SEND CONTROL command 293
 SEND MAP command 296
 SEND TEXT command 306
 SEND TEXT NOEDIT command 311
DEFINE COUNTER command 65
DEFINE DCOUNTER command 65
DEFRESP option
 CONVERSE (non-VTAM) command 62
 CONVERSE (VTAM) command 51
 ISSUE ADD command 152
 ISSUE ERASE command 164
 ISSUE REPLACE command 176
 ISSUE SEND command 179
 SEND (non-VTAM) command 289
 SEND (VTAM) command 281
DEFSRNHT option
 ASSIGN command 26
DEFSRNWD option
 ASSIGN command 26
DELAY command 67
delay processing, task 67
DELETE command 69
DELETE COUNTER command 74
DELETE DCOUNTER command 74
delete loaded program 254
DELETE option
 SPOOLCLOSE command 317
delete records
 batch data interchange records 164
DELETEQ TD command 76
DELETEQ TS command 77
deleting data
 named counter 74
temporary storage queues 77
 transient data queues 76
DELIMITER option
 ASSIGN command 26
DEQ command 78
dequeue from resource 78
DEST option
 CONVERSE (non-VTAM) command 62
 CONVERSE (VTAM) command 51
 SEND (non-VTAM) command 289
 SEND (VTAM) command 281
DESTCOUNT option
 ASSIGN command 26
DESTID option
 ASSIGN command 26
 ISSUE ABORT command 150
 ISSUE ADD command 152
 ISSUE END command 159
 ISSUE ERASE command 164
 ISSUE NOTE command 169
 ISSUE QUERY command 173
 ISSUE REPLACE command 176
 ISSUE SEND command 179
 ISSUE WAIT command 183
DESTIDLENG option
 ASSIGN command 26
 ISSUE ABORT command 150
 ISSUE ADD command 152
 ISSUE END command 159
 ISSUE ERASE command 164
 ISSUE NOTE command 169
 ISSUE QUERY command 173
 ISSUE REPLACE command 176
 ISSUE SEND command 179
 ISSUE WAIT command 183
DET value
 DFHMDT 431
 DFH2980 structure 242
 DFHMAID attention identifier list 425
 DFHBMSCA, standard attribute and printer control character
 list, BMS 421
 DFHEAI interface processor 400
 DFHSCALL macro 400
 DFHEIBLK copybook 401
 DFHEICAL macro, use DFHSCALL 400
 DFHEIEND macro 400
 DFHEIEND macro
 CODEREG 401
 DATAREG 401
defaults 401
description 400
Index 465

DFHEIGBL macro 400
DFHEIPLR symbolic register 402
DFHEIRET macro 400
DFHEISTG macro 401
DFHMDF macro 430
DFHMDI macro 437
DFHMIRS 188
DFHMSD macro 443
DFHMSRCA, MSR control value constants 423
DFHPDI macro 450
DFHPSD macro 451
DFHRESP, built-in function 5
DFHVALUE, translator routine 5
diagnostic services commands 10
DISABLED condition
 DELETE command 70
 DELETEQ TD command 76
 READ command 208
 READQ TD command 226
 STARTBR command 337
 UNLOCK command 343
 WRITE command 371
 WRITEQ TD command 380
disconnect a switched line 404
display-device operations
 attention identifier (AID) 407
 attention identifier list, DFHAID 425
copy displayed information 406
cursor address 407
erase all unprotected fields 406
input operation without data 407
pass control on receipt of an AID 144, 148
print displayed information 406
standard attribute and printer control character list,
 DFHBMSCA 421
terminal 406
distributed program link (DPL) 413
DOCSIZE option
 DOCUMENT INSERT command 82
DOCTOKEN option
 DOCUMENT RETRIEVE command 84
 DOCUMENT SET command 85
 WEB RETRIEVE command 366
 WEB SEND command 367
document
 adding symbols to symbol table 85
 creating 80
 sending documents 367
DOCUMENT CREATE command 80
DOCUMENT INSERT command 82
DOCUMENT option
 DOCUMENT INSERT command 82
DOCUMENT RETRIEVE command 84
document services
 commands 10
DOCUMENT SET command 85
DPL, distributed program link 413
DRK value
 DFHMDI 439
 DFHMSD 445
DSECT operand
 DFHMSD 445
DSECT value
 DFHMSD 448
DSSCS option
 ASSIGN command 26
DSSTAT condition
 ISSUE RECEIVE command 174
DUMP TRANSACTION command 86
DUMPCODE option
 DUMP TRANSACTION command 86
DUPKEY condition
 DELETE command 70
 READ command 208
 READNEXT command 216
 READPREV command 222
DUPREC condition
 REWRITE command 266
 WRITE command 371
dynamic allocation 321
dynamic storage, extensions 401
E
ECADDR option
 WAIT EVENT command 350
ECBLIST option
 WAIT EXTERNAL command 351
WAITCICS command 358
EDF, execution diagnostic facility 332
EIB fields
 EIBAID 387
 EIBATT 387
 EIBCALEN 387
 EIBCOMPL 387
 EIBCONF 387
 EIBDATE 387
 EIBFMH 388
 EIBEOF 388
 EIBERR 388
 EIBERRCD 388
 EIBNODET 388
 EIBFREE 390
 EIBNODAT 390
 EIBRCODE 390
EIB fields (continued)

- EIBRECV 393
- EIBREQID 393
- EIBRESP 393
- EIBRESP2 394
- EIBRLDBK 394
- EIBRSRCE 394
- EIBSIG 394
- EIBSYNC 395
- EIBSYNRB 395
- EIBTASKN 395
- EIBTIME 395
- EIBTRMID 395
- EIBTRNID 395

EIB option

- ADDRESS command 14
- EIBAID 407
 - examining contents of field 425
- EIBREG operand 401
- ENDACTIVITY option
 - RETURN command 261
- ENDBR command 89
- ENDDATA condition
 - RETRIEVE command 259
- ENDFILE condition
 - READNEXT command 216
 - READPREV command 222
 - SPOOLREAD command 324
 - WEB READNEXT command 363
- ENDFILE option
 - ISSUE ENDOUTPUT command 162
- ENDINPT condition
 - RECEIVE (non-VTAM) command 247
- ENDOUTPUT option
 - ISSUE ENDFILE command 161
- English and katakana characters, mixed 62, 248, 252
- ENQ command 91
- ENQBUSY condition
 - ENQ command 92
- ENTER option
 - HANDLE AID command 144
- ENTER TRACEID command
 - monitoring aspects replaced by MONITOR command 192
 - tracing aspects replaced by ENTER TRACENUM command 93
- ENTER TRACENUM command 93
- ENTRY option
 - LOAD command 190
- entry to assembler-language program 400
- ENTRYNAME option
 - MONITOR command 192
- ENVDEFERR condition
 - RETRIEVE command 259
- environment services commands 10

EOC condition

- ALLOCATE (LTYPE6.1) command 19
- CONVERSE (non-VTAM) command 64
- CONVERSE (VTAM) command 53
- ISSUE RECEIVE command 174
- RECEIVE (non-VTAM) command 247
- RECEIVE (VTAM) command 237
- RECEIVE MAP command 249
- RECEIVE PARTN command 253

EODS condition

- CONVERSE (VTAM) command 53
- ISSUE RECEIVE command 174
- RECEIVE (VTAM) command 237
- RECEIVE MAP command 249
- RECEIVE PARTN command 253

EOF condition

- CONVERSE (non-VTAM) command 64
- RECEIVE (non-VTAM) command 247

EQUAL option

- READ command 206
- RESETBR command 255
- STARTBR command 336
equated symbols 4

ERASE option

- CONVERSE (non-VTAM) command 62
- CONVERSE (VTAM) command 51
- SEND (non-VTAM) command 289
- SEND (VTAM) command 281
- SEND CONTROL command 293
- SEND MAP command 296
- SEND MAP MAPPINGDEV command 300
- SEND TEXT command 306
- SEND TEXT NOEDIT command 311

ERASEAUP option

- SEND CONTROL command 293
- SEND MAP command 296
- SEND MAP MAPPINGDEV command 300

ERRTERM option

- ROUTE command 268

ESDS (entry-sequenced data set)

- DELETE command 71
- READ 207
- STARTBR command 337
- WRITE command 370

ESM

- ACEE pointer 14
- QUERY SECURITY command, NOTFND condition 204
- QUERY SECURITY command, RESCLASS option 203
- USERNAME 30

ESM, external security manager 332

ESMREASON option

- CHANGE PASSWORD command 38
- SIGNON command 315
- VERIFY PASSWORD command 347
ESMRESP option
 CHANGE PASSWORD command 38
 SIGNON command 315
 VERIFY PASSWORD command 347

events, timer
 control area, timer 196
 monitoring point 192
 waiting for 350

EWASUPP option
 ASSIGN command 26

examples
 using the ADDRESS SET command 16
 using the ASKTIME command 22
 using the ASSIGN command 30
 using the BIF DEEDIT command 31
 using the CANCEL command 13
 using the DELAY command 68
 using the DELETE command 73
 using the DEQ command 79
 using the DUMP TRANSACTION command 88
 using the ENQ command 92
 using the ENTER TRACENUM command 94
 using the FORMATTIME command 111
 using the FREEMAIN command 117
 using the GETMAIN command 141
 using the HANDLE ABEND command 143
 using the HANDLE AID command 145
 using the HANDLE CONDITION command 146
 using the LINK command 189
 using the LOAD command 191
 using the MONITOR command 193
 using the POST command 198
 using the READ command 211
 using the READQ TD command 226
 using the READQ TS command 228
 using the RELEASE command 254
 using the RETRIEVE command 259
 using the REWRITE command 267
 using the START ATTACH command 333
 using the START BREXIT command 334
 using the START command 329
 using the WAIT EVENT command 350
 using the WAIT EXTERNAL command 352
 using the WAIT JOURNALNAME command 354
 using the WAITCICS command 359
 using the WRITE command 374
 using the WRITE JOURNALNAME command 376
 using the WRITEQ TD command 381
 using the XCTL command 386

EXCEPTION option
 ENTER TRACENUM command 93

exception support commands 10

exclusive control release, UNLOCK command 347

EXEC CICS command format 1

EXEC CICS DLI interface
 No longer documented xiv

execution diagnostic facility (EDF) 332
exit from ASM program 400
exit, abnormal termination recovery 142
expiration time, notification when reached 196

EXPIRED condition
 DELAY command 68
 POST command 197
 WRITE OPERATOR command 379

EXPIRYTIME option
 VERIFY PASSWORD command 347

EXTATT operand
 DFHMDI 439
 DFHMSD 445

EXTDS option
 ASSIGN command 26

external security manager (ESM) 203, 332

EXTRACT ATTACH (LUTYPE6.1) command 95

EXTRACT ATTACH (MRO) command 97

EXTRACT ATTRIBUTES (APPC) command 99

EXTRACT ATTRIBUTES (MRO) command 100

EXTRACT CERTIFICATE command 101

EXTRACT LOGONMSG command 103

EXTRACT PROCESS command 104

EXTRACT TCPIP command 106

EXTRACT TCT command 108

EXTRACT WEB command 361

F

FACILITY option
 ASSIGN command 26

FCl option
 ASSIGN command 26, 397

FCT option
 DUMP TRANSACTION command 86

FIELD option
 BIF DEEDIT command 31

FIELD separator operand 440, 446

FIELD value
 DFHMDI 439
 DFHMSD 445

FIELDS operand
 DFHMDI 440

file control
 commands 10
 deleting VSAM records 69
 end browse operation 89
 read next record 212
 read previous record 219
 release exclusive control 343
 specify start for browse 336
 update a record 265
 writing new record 370

FILE option
 DELETE command 69

Index 467
FILE option (continued)
 ENDBR command 89
 READ command 206
 READNEXT command 213
 READPREV command 220
 RESETBR command 255
 REWRITE command 265
 STARTBR command 336
 UNLOCK command 343
 WRITE command 371

filename
 definition 2, 3, 4

filename argument, CICS command format 2

FILENAMEFOUND condition
 DELETE command 70
 ENDBR command 89
 READ command 208
 READNEXT command 216
 READPREV command 222
 RESETBR command 256
 REWRITE command 266
 STARTBR command 337
 UNLOCK command 343
 WRITE command 372

FIRST value
 DFHMDI 440

FLDSEP operand
 DFHMDI 440
 DFHMSD 446

LENGTH option
 DUMP TRANSACTION command 86
 fullword alternative to LENGTH 403
 GDS RECEIVE command 131
 GDS SEND command 133
 GETMAIN command 140
 LOAD command 190
 RECEIVE (non-VTAM) command 246
 RECEIVE (VTAM) command 236
 SEND (non-VTAM) command 290
 SEND (VTAM) command 281
 SPOOLWRITE command 326
 WRITE JOURNALNAME command 375

FMH option
 CONVERSE (non-VTAM) command 62
 CONVERSE (VTAM) command 51
 SEND (non-VTAM) command 290
 SEND (VTAM) command 281
 START command 330

FMHPARM option
 SEND MAP command 296
 SEND PAGE command 302
 SEND TEXT command 306

FOLD operand
 DFHMSD 446

FOR option
 DELAY command 67

FORMATTIME command 109

FORMFEED option
 SEND CONTROL command 293
 SEND MAP command 296
 SEND MAP MAPPINGDEV command 300
 SEND TEXT command 306

FREE (APPC) command 113
FREE (LUTYPE6.1) command 114
FREE (MRO) command 115
FREE command 112

free main storage 116

FREEKB option
 SEND CONTROL command 293
 SEND MAP command 296
 SEND MAP MAPPINGDEV command 301
 SEND TEXT command 306
 SEND TEXT NOEDIT command 311

FREEKB value
 DFHMDI 439
 DFHMSD 445

FREEMAIN command 116

FROM option
 CONVERSE (non-VTAM) command 62
 CONVERSE (VTAM) command 51
 DUMP TRANSACTION command 86
 ENTER TRACENUM command 93
 GDS SEND command 133
 ISSUE ADD command 152
 ISSUE PASS command 170
 ISSUE REPLACE command 176
 ISSUE SEND command 179
 RECEIVE MAP command 248
 RECEIVE MAP MAPPINGDEV command 250
 REWRITE command 265
 SEND (non-VTAM) command 290
 SEND (VTAM) command 281
 SEND MAP command 296
 SEND MAP MAPPINGDEV command 301
 SEND TEXT command 306
 SEND TEXT MAPPED command 309
 SEND TEXT NOEDIT command 311
 SPOOLWRITE command 326
 START ATTACH command 333
 START command 330
 WRITE command 371
 WRITE JOURNALNAME command 375
 WRITEQ TD command 380
 WRITEQ TS command 382

FROMDOC option
 DOCUMENT INSERT command 82

FROMLENGTH option
 CONVERSE (non-VTAM) command 62
 CONVERSE (VTAM) command 51
 fullword alternative to FROMLENGTH 403

FROMLENGTH option
 CONVERSE (non-VTAM) command 62

468 CICS Application Programming Reference
FROMLENGTH option (continued)
CONVERSE (VTAM) command 51
ENTER TRACENUM command 93
fullword length alternative (FROMLENGTH) 403
FRSET option
SEND CONTROL command 293
SEND MAP command 296
SEND MAP MAPPINGDEV command 301
FRSET value
DFHMDI 439
DFHMSD 445
FSET value
DFHMDF 432
Full Function Logical Unit, 3790 49, 235, 279
FULLDATE option
FORMATTIME 110
fullword length option 403
FUNCERR condition
ISSUE ABORT command 150
ISSUE ADD command 152
ISSUE END command 159
ISSUE ERASE command 164
ISSUE NOTE command 169
ISSUE QUERY command 173
ISSUE REPLACE command 177
ISSUE SEND command 180
ISSUE WAIT command 183
G
GCHARS option
ASSIGN command 26
GCODES option
ASSIGN command 26
GDS (generalized data stream) 9
GDS ALLOCATE command 118
GDS ASSIGN command 120
GDS CONNECT PROCESS command 121
GDS EXTRACT ATTRIBUTES command 123
GDS EXTRACT PROCESS command 124
GDS FREE command 125
GDS ISSUE ABEND command 126
GDS ISSUE CONFIRMATION command 127
GDS ISSUE ERROR command 128
GDS ISSUE PREPARE command 129
GDS ISSUE SIGNAL command 130
GDS RECEIVE command 131
GDS SEND command 133
GDS WAIT command 135
General Banking Terminal System (2980 General Banking
Terminal System) 241
generalized data stream (GDS) 9
generic applid, XRF 24
GENERIEC option
DELETE command 69
READ command 206
GENERIEC option (continued)
RESETBR command 255
STARTBR command 337
GET COUNTER command 136
GET D COUNTER command 136
get main storage 139
GETMAIN command 139
GINIT operand
DFHMDF 432
GMMI option
ASSIGN command 26
GROUPID option
SIGNON command 315
GRPNAME operand
DFHMDF 432
GTEQ option
READ command 206
RESETBR command 255
STARTBR command 337
H
HANDLE ABEND command 142
HANDLE A ID command 144
HANDLE CONDITION command 146
header
browsing 360, 368
extracting information 362, 369
retrieve next 363
HEADER operand
DFHMDI 440
HEADER option
SEND TEXT command 306
hhmmss argument, CICS command format 2
HILIGHT operand
DFHMDF 433
DFHMDI 440
DFHMSD 446
HILIGHT option
ASSIGN command 27
HOLD option
LOAD command 190
HONEOM option
SEND CONTROL command 293
SEND MAP command 297
SEND TEXT command 306
SEND TEXT NOEDIT command 311
host command processor LU, 3650/3680 277
host conversational LU 3650
(3270) 47, 276
(3653) 47, 277
HOSTCODEPAGE option
WEB RECEIVE command 364
HOURS option
DELAY command 67
POST command 197
HOURS option (continued)
 ROUTE command 268
 START command 330
HTAB operand
 DFHMSD 446
HTTP requests
 receiving 364, 366
HTTPHEADER option
 WEB READ command 362
 WEB READNEXT command 363
 WEB WRITE command 369
HTTPMETHOD option
 WEB EXTRACT command 361
HTTPVERSION option
 WEB EXTRACT command 361
IC value
 DFHMDF 432
IGNORE CONDITION command 148
IGREQCD condition
 CONVERSE (VTAM) command 53
 ISSUE SEND command 180
 SEND (VTAM) command 282
 SEND CONTROL command 294
 SEND MAP command 298
 SEND PAGE command 303
 SEND TEXT command 308
 SEND TEXT MAPPED command 309
 SEND TEXT NOEDIT command 312
IGREQID condition
 ROUTE command 270
 SEND CONTROL command 294
 SEND MAP command 298
 SEND TEXT command 308
 SEND TEXT MAPPED command 310
 SEND TEXT NOEDIT command 312
ILLOGIC condition
 DELETE command 70
 EIBRCODE 393
 ENDBR command 89
 READ command 208
 READNEXT command 216
 READPREV command 222
 RESTARTBR command 256
 REWRITE command 266
 SPOOLOPEN INPUT command 319
 SPOOLOPEN OUTPUT command 322
 SPOOLREAD command 324
 STARTBR command 337
 UNLOCK command 344
 WRITE command 372
IMMEDIATE option
 RETURN command 261
implicit SPOOLCLOSE 319
INBFMH condition
 CONVERSE (non-VTAM) command 64
 CONVERSE (VTAM) command 53
 RECEIVE (non-VTAM) command 247
 RECEIVE (VTAM) command 237
INCREMENT option
 GET COUNTER command 137
 GET DCOUNTER command 137
 REVERSE COUNTER command 263
 REVERSE DCOUNTER command 263
INITIAL operand
 DFHMDF 433
initialize main storage 139
initiate a task 330
INITIMG option
 GETMAIN command 140
INITPARM option
 ASSIGN command 27
INITPARMLLEN option
 ASSIGN command 27
INPARTN option
 ASSIGN command 27
 RECEIVE MAP command 248
input operation without data 407
INPUTMSG option
 LINK command 187
 RETURN command 261
 XCTL command 385
INPUTMSGLEN option
 LINK command 187
 RETURN command 262
 XCTL command 385
interactive logical units 48, 234, 278
interface processor DFHEAI 400
interface to JES 6
interpreter logical unit, 3650
 CONVERSE command 46
 ISSUE EODS command 163
 ISSUE LOAD command 168
 RECEIVE command 233
 SEND (VTAM) command 276
interrogate a data set 173
interval control
 ASKTIME options 22
 cancel interval control command 36
 CANCEL options 36
 commands 10
 DELAY options 67
delay processing of task 67
 FORMATTIME options 109
notification when specified time expires 196
request current time of day 22
retrieve data stored for task 258
start a task 328
wait for event to occur 350
INTERVAL option
 DELAY command 67
 POST command 197
 ROUTE command 268
 START command 330

INTO option
 CONVERSE (non-VTAM) command 62
 CONVERSE (VTAM) command 51
 DOCUMENT RETRIEVE command 84
 EXTRACT LOGONMSG command 103
 GDS RECEIVE command 131
 ISSUE RECEIVE command 174
 READ command 206
 READNEXT command 213
 READPREV command 220
 READQ TD command 225
 READQ TS command 227
 RECEIVE (non-VTAM) command 246
 RECEIVE (VTAM) command 236
 RECEIVE MAP command 248
 RECEIVE MAP MAPPINGDEV command 250
 RECEIVE PARTN command 252
 RETRIEVE command 258
 SPOOLREAD command 324
 WEB RECEIVE command 364

INVALIDCOUNT option
 VERIFY PASSWORD command 347

INVERRTERM condition
 ROUTE command 270

INVITE option
 GDS SEND command 133
 SEND (non-VTAM) command 290
 SEND (VTAM) command 281

INVLDC condition
 ROUTE command 270
 SEND CONTROL command 294
 SEND MAP command 299
 SEND TEXT command 308

INVMPSZ condition
 EIBRCODE byte 3 393
 RECEIVE MAP command 249
 RECEIVE MAP MAPPINGDEV command 251
 SEND MAP command 299
 SEND MAP MAPPINGDEV command 301

INVOKINGPROG option
 ASSIGN command 27

INVPARTN condition
 RECEIVE MAP command 249
 RECEIVE PARTN command 253
 SEND CONTROL command 294
 SEND MAP command 299
 SEND TEXT command 308
 SEND TEXT NOEDIT command 312

INVPARTNSET condition
 SEND PARTNSET command 304

INVREQ condition
 ALLOCATE (APPC) command 17
 ALLOCATE (LUTYPE6.1) command 19
 ALLOCATE (MRO) command 21
 ASSIGN command 30
 CHANGE PASSWORD command 38
 CHANGE TASK command 39
 CONNECT PROCESS command 41
 CONVERSE (VTAM) command 53
 DELAY command 68
 DELETE command 70
 DELETE COUNTER command 66, 74, 202
 DELETE DCOUNTER command 66
 DELETEQ TD command 76
 DELETEQ TS command 77
 DEQ command 78
 DUMP TRANSACTION command 88
 EIBRCODE bytes 1-3 392
 ENDBR command 89
 ENQ command 92
 ENTER TRACENUM command 93
 EXTRACT ATTACH (LUTYPE6.1) command 96
 EXTRACT ATTACH (MRO) command 98
 EXTRACT ATTRIBUTES (APPC) command 99
 EXTRACT CERTIFICATE command 102
 EXTRACT PROCESS command 104
 EXTRACT TCPIP command 107
 EXTRACT TCT command 108
 FORMATTIME command 111
 FREE (APPC) command 113
 FREE (LUTYPE6.1) command 114
 FREE (MRO) command 115
 FREEMAIN command 116
 HANDLE AID command 145
 ISSUE ABEND command 149
 ISSUE ABORT command 150
 ISSUE ADD command 153
 ISSUE CONFIRMATION command 154
 ISSUE END command 159
 ISSUE ENDFILE command 161
 ISSUE ENDOUTPUT command 162
 ISSUE EODS command 163
 ISSUE ERASE command 165
 ISSUE ERASEAUP command 166
 ISSUE ERROR command 167
 ISSUE NOTE command 169
 ISSUE PASS command 170
 ISSUE PREPARE command 171
 ISSUE PRINT command 172
 ISSUE QUERY command 173
 ISSUE RECEIVE command 175
 ISSUE REPLACE command 177
 ISSUE SEND command 180
 ISSUE SIGNAL (APPC) command 181
 ISSUE WAIT command 183
 LINK command 188
<table>
<thead>
<tr>
<th>Condition</th>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVREQ</td>
<td>LOAD</td>
<td>190</td>
</tr>
<tr>
<td>INVREQ</td>
<td>MONITOR</td>
<td>192</td>
</tr>
<tr>
<td>INVREQ</td>
<td>POP HANDLE</td>
<td>195</td>
</tr>
<tr>
<td>INVREQ</td>
<td>POST</td>
<td>197</td>
</tr>
<tr>
<td>INVREQ</td>
<td>PURGE MESSAGE</td>
<td>199</td>
</tr>
<tr>
<td>INVREQ</td>
<td>QUERY SECURITY</td>
<td>204</td>
</tr>
<tr>
<td>INVREQ</td>
<td>READ</td>
<td>208</td>
</tr>
<tr>
<td>INVREQ</td>
<td>READNEXT</td>
<td>216</td>
</tr>
<tr>
<td>INVREQ</td>
<td>READPREV</td>
<td>222</td>
</tr>
<tr>
<td>INVREQ</td>
<td>READQ TD</td>
<td>226</td>
</tr>
<tr>
<td>INVREQ</td>
<td>READQ TS</td>
<td>228</td>
</tr>
<tr>
<td>INVREQ</td>
<td>RECEIVE (non-VTAM)</td>
<td>247</td>
</tr>
<tr>
<td>INVREQ</td>
<td>RECEIVE MAP</td>
<td>249</td>
</tr>
<tr>
<td>INVREQ</td>
<td>RECEIVE MAP MAPPINGDEV</td>
<td>251</td>
</tr>
<tr>
<td>INVREQ</td>
<td>RECEIVE PARTN</td>
<td>253</td>
</tr>
<tr>
<td>INVREQ</td>
<td>RELEASE</td>
<td>254</td>
</tr>
<tr>
<td>INVREQ</td>
<td>RESETBR</td>
<td>256</td>
</tr>
<tr>
<td>INVREQ</td>
<td>RETRIEVE</td>
<td>259</td>
</tr>
<tr>
<td>INVREQ</td>
<td>RETURN</td>
<td>262</td>
</tr>
<tr>
<td>INVREQ</td>
<td>REWRITE</td>
<td>266</td>
</tr>
<tr>
<td>INVREQ</td>
<td>ROUTE</td>
<td>270</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SEND (non-VTAM)</td>
<td>290</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SEND CONTROL</td>
<td>294</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SEND MAP</td>
<td>299</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SEND MAP MAPPINGDEV</td>
<td>301</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SEND PAGE</td>
<td>303</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SEND PARTNSET</td>
<td>304</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SEND TEXT</td>
<td>308</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SEND TEXT MAPPED</td>
<td>310</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SEND TEXT NOEDIT</td>
<td>312</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SIGNOFF</td>
<td>314</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SIGNON</td>
<td>316</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SPOOLCLOSE</td>
<td>317</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SPOOLOPEN INPUT</td>
<td>319</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SPOOLOPEN OUTPUT</td>
<td>322</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SPOOLREAD</td>
<td>324</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SPOOLWRITE</td>
<td>326</td>
</tr>
<tr>
<td>INVREQ</td>
<td>START ATTACH</td>
<td>333</td>
</tr>
<tr>
<td>INVREQ</td>
<td>START BREXIT</td>
<td>334</td>
</tr>
<tr>
<td>INVREQ</td>
<td>START</td>
<td>332</td>
</tr>
<tr>
<td>INVREQ</td>
<td>STARTBR</td>
<td>338</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SYNCPOINT</td>
<td>341</td>
</tr>
<tr>
<td>INVREQ</td>
<td>SYNCPOINT ROLLBACK</td>
<td>342</td>
</tr>
<tr>
<td>INVREQ</td>
<td>UNLOCK</td>
<td>344</td>
</tr>
<tr>
<td>INVREQ</td>
<td>VERIFY PASSWORD</td>
<td>348</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WAIT CONVID</td>
<td>349</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WAIT EVENT</td>
<td>350</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WAIT EXTERNAL</td>
<td>352</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WAIT TERMINAL</td>
<td>357</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WAITCICS</td>
<td>359</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WEB END BROWSE</td>
<td>360</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WEB EXTRACT</td>
<td>361</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WEB READ</td>
<td>362</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WEB READNEXT</td>
<td>363</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WEB RECEIVE</td>
<td>364</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVREQ</td>
<td>WEB RETRIEVE</td>
<td>366</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WEB SEND</td>
<td>367</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WEB START BROWSE</td>
<td>368</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WEB WRITE</td>
<td>369</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WRITE</td>
<td>372</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WRITE JOURNALNAME</td>
<td>376</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WRITE OPERATOR</td>
<td>379</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WRITEQ TD</td>
<td>380</td>
</tr>
<tr>
<td>INVREQ</td>
<td>WRITEQ TS</td>
<td>383</td>
</tr>
<tr>
<td>INVREQ</td>
<td>XCTL</td>
<td>385</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOERR</td>
<td>DELETE</td>
<td>71</td>
</tr>
<tr>
<td>IOERR</td>
<td>DUMP TRANSACTION</td>
<td>88</td>
</tr>
<tr>
<td>IOERR</td>
<td>EIBRCODE</td>
<td>393</td>
</tr>
<tr>
<td>IOERR</td>
<td>ENDBR</td>
<td>89</td>
</tr>
<tr>
<td>IOERR</td>
<td>READ</td>
<td>209</td>
</tr>
<tr>
<td>IOERR</td>
<td>READNEXT</td>
<td>216</td>
</tr>
<tr>
<td>IOERR</td>
<td>READPREV</td>
<td>223</td>
</tr>
<tr>
<td>IOERR</td>
<td>READQ TD</td>
<td>226</td>
</tr>
<tr>
<td>IOERR</td>
<td>READQ TS</td>
<td>228</td>
</tr>
<tr>
<td>IOERR</td>
<td>RESETBR</td>
<td>256</td>
</tr>
<tr>
<td>IOERR</td>
<td>RETRIEVE</td>
<td>259</td>
</tr>
<tr>
<td>IOERR</td>
<td>REWRITE</td>
<td>266</td>
</tr>
<tr>
<td>IOERR</td>
<td>START</td>
<td>332</td>
</tr>
<tr>
<td>IOERR</td>
<td>STARTBR</td>
<td>338</td>
</tr>
<tr>
<td>IOERR</td>
<td>UNLOCK</td>
<td>344</td>
</tr>
<tr>
<td>IOERR</td>
<td>WRITE</td>
<td>372</td>
</tr>
<tr>
<td>IOERR</td>
<td>WRITE JOURNALNAME</td>
<td>376</td>
</tr>
<tr>
<td>IOERR</td>
<td>WRITEQ TD</td>
<td>380</td>
</tr>
<tr>
<td>IOERR</td>
<td>WRITEQ TS</td>
<td>383</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISCINVREQ</td>
<td>CANCEL</td>
<td>36</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>DELETE</td>
<td>71</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>DELETEQ TD</td>
<td>76</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>DELETEQ TS</td>
<td>77</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>ENDBR</td>
<td>89</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>READ</td>
<td>209</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>READNEXT</td>
<td>216</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>READPREV</td>
<td>223</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>READQ TD</td>
<td>226</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>READQ TS</td>
<td>228</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>RESETBR</td>
<td>257</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>REWRITE</td>
<td>266</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>START</td>
<td>332</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>STARTBR</td>
<td>338</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>UNLOCK</td>
<td>344</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>WRITE</td>
<td>372</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>WRITEQ TD</td>
<td>380</td>
</tr>
<tr>
<td>ISCINVREQ</td>
<td>WRITEQ TS</td>
<td>383</td>
</tr>
</tbody>
</table>

ISSUE ABEND command 149
ISSUE ABORT command 150
ISSUE ADD command 152
ISSUE CONFIRMATION command 154
ISSUE COPY (3270 display) command 155
ISSUE COPY (3270 logical) command 156
ISSUE COPY command
general information 406
ISSUE DISCONNECT (default) command 157
ISSUE DISCONNECT (LUTYPE6.1) command 158
ISSUE DISCONNECT command
general information 404
ISSUE END command 159
ISSUE ENDFILE command 161
ISSUE ENDOUTPUT command 162
ISSUE EODS command 163
ISSUE ERASE command 164
ISSUE ERASEAUP command 166
general information 406
ISSUE ERROR command 167
ISSUE LOAD command 168
ISSUE NOTE command 169
ISSUE PASS command 170
ISSUE PREPARE command 171
ISSUE PRINT command 172
general information 406
ISSUE QUERY command 173
ISSUE RECEIVE command 174
ISSUE REPLACE command 176
ISSUE RESET command 178
ISSUE SEND command 179
ISSUE SIGNAL (APPC) command 181
ISSUE SIGNAL (LUTYPE6.1) command 182
ISSUE SIGNAL command
general information 404
ISSUE WAIT command 183
ISSUER option
EXTRACT CERTIFICATE command 101
ITEM option
READQ TS command 227
WRITEQ TS command 382
ITEMERR condition
READQ TS command 228
WRITEQ TS command 383
IUTYPE option
BUILD ATTACH (LUTYPE6.1) command 32
BUILD ATTACH (MRO) command 34
EXTRACT ATTACH (LUTYPE6.1) command 95
EXTRACT ATTACH (MRO) command 97

JES (job entry subsystem)
CICS interface to 6
exits 9
input 8
internal limits 6

JES (job entry subsystem) (continued)
output 9
RESP and RESP2 options 8
retrieve data from JES spool 7
send file to destination 8
spooler commands 8
write directly to JES spool 7
JIDERR condition
WRITE JOURNALNAME command 376
JIDERR option
WAIT JOURNALNAME command 353
JOURNAL command 185
journal control
create a journal record 185
journal record, creating 375
journaling commands 10
JOURNALNAME option
WAIT JOURNALNAME command 353
WRITE JOURNALNAME command 375
JTYPEID option
WRITE JOURNALNAME command 375
JUSFIRST option
SEND TEXT command 306
JUSLAST option
SEND TEXT command 306
JUSTIFY operand
DFHMD 433
DFHMDF 440
JUSTIFY option
SEND TEXT command 306

K
katakana and English characters, mixed 62, 252
KATAKANA option
ASSIGN command 27
katakana terminals
CONVERSE (3270 logical) command 51
CONVERSE (LUTYPE2/LUTYPE3) command 51
CONVERSE command (3270 display) 62
CONVERSE command (3600 BTAM) 62
CONVERSE command (3735) 62
CONVERSE command (3740) 62
CONVERSE command (System/3) 62
CONVERSE command (System/7) 62
RECEIVE (3270 display) command 246
RECEIVE (3270 logical) command 236
RECEIVE (3790 3270-display) command 246
RECEIVE (LUTYPE2/LUTYPE3) command 236
RECEIVE (System/3) command 246
RECEIVE (System/7) command 246
RECEIVE MAP command 248
RECEIVE PARTN command 252
SEND (3600 BTAM) command 289
SEND (3735) command 289
SEND (3740) command 289

Index 473
katakana terminals (continued)
SEND (System/3) command 289
SEND (System/7) command 289
KEEP option
SPOOLCLOSE command 317
KEYLENGTH option
DELETE command 69
ISSUE ERASE command 164
ISSUE REPLACE command 176
READ command 206
READNEXT command 213
READPREV command 220
RESETBR command 337
WRITE command 371
KEYNUMBER option
ISSUE ERASE command 164
ISSUE REPLACE command 176
keyword length 403

L

L40, L64, or L80 options
SEND CONTROL command 293
SEND MAP command 297
SEND TEXT command 307
SEND TEXT NOEDIT command 312
label argument, CICS command format 2
LABEL option
HANDLE ABEND command 142
LANG operand
DFHMSD 446
LANGINUSE option
ASSIGN 27
SIGNON command 315
language codes 419
LANGUAGECODE option
SIGNON command 315
LAST option
GDS SEND command 133
SEND (non-VTAM) command 290
SEND (VTAM) command 281
SEND CONTROL command 293
SEND MAP command 297
SEND PAGE command 302
SEND TEXT command 306
SEND TEXT MAPPED command 309
SEND TEXT NOEDIT command 312
LEFT value
DFHMDF 433
DFHMDI 440
LENGERR condition
BIF DEEDIT command 31
CONNECT PROCESS command 41
CONVERSE (non-VTAM) command 64
CONVERSE (VTAM) command 53
DEQ command 78
EIBRCODE byte 1 393
ENQ command 92
ENTER TRACENUM command 94
EXTRACT CERTIFICATE command 102
EXTRACT PROCESS command 105
EXTRACT TCPIP command 107
GETMAIN command 141
ISSUE COPY (3270 logical) command 156
ISSUE PASS command 170
ISSUE RECEIVE command 175
LINK command 188
LOAD command 191
QUERY SECURITY command 204
READ command 209
READNEXT command 216
READPREV command 223
READQ TD command 226
READQ TS command 228
RECEIVE (non-VTAM) command 247
RECEIVE (VTAM) command 237
RECEIVE PARTN command 253
RETRIEVE command 259
RETURN command 262
REWRITE command 266
SEND (non-VTAM) command 290
SEND (VTAM) command 282
SEND TEXT command 308
SPOOLOPEN OUTPUT command 322
SPOOLREAD command 324
SPOOLWRITE command 326
START ATTACH command 333
START BREXIT command 334
START command 332

LDC option (continued)
ROUTE command 268
SEND (VTAM) command 281
SEND CONTROL command 293
SEND MAP command 297
SEND TEXT command 307
LDCMNEM option
ASSIGN command 27
LDCNUM option
ASSIGN command 27
LEAVEKB option
CONVERSE (non-VTAM) command 62
RECEIVE (non-VTAM) command 246
SEND (non-VTAM) command 290
LEFT value
DFHMDF 433
DFHMDI 440
LDC option (continued)
ROUTE command 268
SEND (VTAM) command 281
SEND CONTROL command 293
SEND MAP command 297
SEND TEXT command 307
LDCMNEM option
ASSIGN command 27
LDCNUM option
ASSIGN command 27
LEAVEKB option
CONVERSE (non-VTAM) command 62
RECEIVE (non-VTAM) command 246
SEND (non-VTAM) command 290
LEFT value
DFHMDF 433
DFHMDI 440
LENGERR condition
BIF DEEDIT command 31
CONNECT PROCESS command 41
CONVERSE (non-VTAM) command 64
CONVERSE (VTAM) command 53
DEQ command 78
EIBRCODE byte 1 393
ENQ command 92
ENTER TRACENUM command 94
EXTRACT CERTIFICATE command 102
EXTRACT PROCESS command 105
EXTRACT TCPIP command 107
GETMAIN command 141
ISSUE COPY (3270 logical) command 156
ISSUE PASS command 170
ISSUE RECEIVE command 175
LINK command 188
LOAD command 191
QUERY SECURITY command 204
READ command 209
READNEXT command 216
READPREV command 223
READQ TD command 226
READQ TS command 228
RECEIVE (non-VTAM) command 247
RECEIVE (VTAM) command 237
RECEIVE PARTN command 253
RETRIEVE command 259
RETURN command 262
REWRITE command 266
SEND (non-VTAM) command 290
SEND (VTAM) command 282
SEND TEXT command 308
SPOOLOPEN OUTPUT command 322
SPOOLREAD command 324
SPOOLWRITE command 326
START ATTACH command 333
START BREXIT command 334
START command 332
LENGERR condition (continued)
WEB EXTRACT command 361
WEB READ command 362
WEB READNEXT command 363
WEB RECEIVE command 364
WRITE command 372
WRITE JOURNALNAME command 376
WRITE OPERATOR command 379
WRITEQ TD command 380
WRITEQ TS command 383
XCTL command 385
LENGERR option
DOCUMENT RETRIEVE command 84
LENGTH operand
DFHMDF 433
LENGTH option
BIF DEEDIT command 31
built-in function 31
default (assembler language) 4
default (C) 3
default (PL/I) 4
DEQ command 78
DOCUMENT RETRIEVE command 84
DOCUMENT SET command 85
DUMP TRANSACTION command 86
ENQ command 91
EXTRACT CERTIFICATE command 101
EXTRACT LOGONMSG command 103
fullword length alternative (FLENGTH) 403
GETMAIN command 140
ISSUE ADD command 152
ISSUE PASS command 170
ISSUE RECEIVE command 174
ISSUE REPLACE command 176
ISSUE SEND command 179
LINK command 187
LOAD command 190
READ command 206
READNEXT command 214
READPREV command 220
READQ TD command 225
READQ TS command 227
RECEIVE (non-VTAM) command 246
RECEIVE (VTAM) command 236
RECEIVE MAP command 248
RECEIVE MAP MAPPINGDEV command 250
RECEIVE PARTN command 252
RETRIEVE command 258
RETURN command 262
REWRITE command 265
SEND (non-VTAM) command 290
SEND (VTAM) command 282
SEND MAP command 297
SEND MAP MAPPINGDEV command 301
SEND TEXT command 307
SEND TEXT MAPPED command 309
LENGTH option (continued)
SEND TEXT NOEDIT command 312
START ATTACHcommand 333
START command 330
WEB RECEIVE command 364
WEB SEND command 367
WRITE command 371
WRITEQ TD command 380
WRITEQ TS command 382
XCTL command 385
LENGTH value
DFHMDI 438
DFHMSD 444
LENGTHLIST option
DUMP TRANSACTION command 87
LIGHTPEN option
HANDLE AID command 144
LINE operand
DFHMDI 440
LINE option
SPOOLWRITE command 326
line value
DFHMDI 441
line,column value
DFHMDF 435
LINEADDR option
CONVERSE (non-VTAM) command 62
SEND (non-VTAM) command 290
LINK command 186
link to program expecting return 186
LIST option
ROUTE command 269
literal constants 4
LLID option
GDS RECEIVE command 131
LOAD command 190
load programs, tables, or maps 190
LOADING condition
DELETE command 71
READ command 209
READNEXT command 217
STARTBR command 338
WRITE command 372
LOCALITY option
EXTRACT CERTIFICATE command 101
LOCALITYLEN option
EXTRACT CERTIFICATE command 101
LOCKED condition
DELETE command 71
DELETEQ TD command 76
DELETEQ TS command 77
READ command 210
READNEXT command 217
READPREV command 223
READQ TD command 226
REWRITE command 267
LOCKED condition (continued)
WRITE command 373
WRITEQ TD command 380
WRITEQ TS command 383
logical device code (LDC) 45, 275
logical messages, BMS
completing a logical message 302
full BMS
ROUTE command 268
purging a logical message 199
routing a logical message 268
LOGMESSAGE option
QUERY SECURITY command 203
LOGMODE option
ISSUE PASS command 170
LOGONLOGMODE option
ISSUE PASS 170
LU (logical unit)
3270 Information Display System 45, 156, 231, 274
3270 SCS Printer 44, 273
3270-Display, LUTYPE2 43, 230, 272
3270-Display, LUTYPE3 230, 272
3600 (3601) 45, 232, 275
3600 (3614) 46, 233, 275
3600 pipeline 232, 274
3650 host conversational (3270) 47, 276
3650 host conversational (3653) 47, 277
3650 interpreter 46, 163, 168, 233, 276
3650/3680 host command processor 277
3770 batch 49, 234, 278
3790 (3270-display) 50, 245, 280
3790 (3270-printer) 280
3790 full-function 235, 279
3790 full-function or inquiry 49
3790 SCS printer 279
batch 49, 234, 278
conversing with (CONVERSE) 404
interactive 48
reading data from 174, 403
writing data to 152, 403
LUNAME option
ISSUE PASS command 170
LUTYPE2, 3270-Display LU 43, 230, 272
LUTYPE3, 3270-Display LU 230, 272
LUTYPE4
logical unit 43, 230, 272
LUTYPE6.1 logical unit
acquiring a session 19
communicating on LUTYPE6.1 session 44
converting 8-character names to 4 characters 108
disconnecting 158
ensuring terminal operation has completed 357
getting information about 194
receiving data 231
requesting change of direction 182
retrieving values from an LUTYPE6.1 header 95
sending data 273
specifying values for an MRO attach header 34
specifying values for LUTYPE6.1 attach header 32
LUTYPE6.1 logical unit (continued)
M
macros, BMS, summary 427
magnetic slot reader (MSR) 423
MAIN option
WRITEQ TS command 382
main storage 139
map definition macro, BMS 427, 438
MAP option
RECEIVE MAP command 249
RECEIVE MAP MAPPINGDEV command 250
SEND MAP command 297
SEND MAP MAPPINGDEV command 301
MAP value
DFHMSD 448
MAPATTS operand
DFHMDI 441
DFHMSD 446
MAPCOLUMN option
ASSIGN command 27
MAPFAIL condition
RECEIVE MAP command 249
RECEIVE MAP MAPPINGDEV command 251
MAPHEIGHT option
ASSIGN command 27
MAPLINE option
ASSIGN command 27
MAPONLY option
SEND MAP command 297
SEND MAP MAPPINGDEV command 301
MAPONLY value
DFHMDI 439
DFHMSD 446
MAPPINGDEV option
RECEIVE MAP MAPPINGDEV command 250
SEND MAP MAPPINGDEV command 301
maps, loading 190
mapset definition macro (DFHMSD) 427, 444
MAPSET option
RECEIVE MAP command 249
RECEIVE MAP MAPPINGDEV command 250
SEND MAP command 297
SEND MAP MAPPINGDEV command 301
MAPSFX operand
DFHPDI 450
MAPWIDTH option
ASSIGN command 27
MASSINSERT option
WRITE command 371
MAXLENGTH option
CONVERSE (non-VTAM) command 62
476 CICS Application Programming Reference
MAXFLENGTH option (continued)
 CONVERSE (VTAM) command 51
 fullword alternative to MAXLENGTH 403
 GDS RECEIVE command 131
 RECEIVE (non-VTAM) command 246
 RECEIVE (VTAM) command 236
 SPOOLREAD command 324
MAXIMUM option
 DEFINE COUNTER command 65
 DEFINE DCOUNTER command 65
 QUERY COUNTER command 201
 QUERY DCOUNTER command 201
MAXLENGTH option
 CONVERSE (non-VTAM) command 62
 CONVERSE (VTAM) command 52
 DOCUMENT RETRIEVE command 84
 fullword length alternative (MAXFLENGTH) 403
 RECEIVE (non-VTAM) command 246
 RECEIVE (VTAM) command 236
 WEB RECEIVE command 364
 WRITE OPERATOR command 378
MAXLIFETIME option
 DEQ command 78
 ENQ command 91
MAXPROCLEN option
 EXTRACT PROCESS command 104
 GDS EXTRACT PROCESS command 124
MCC option
 SPOOLOPEN OUTPUT command 321
METHODLENGTH option
 WEB EXTRACT command 361
MINIMUM option
 DEFINE COUNTER command 65
 DEFINE DCOUNTER command 65
 QUERY COUNTER command 201
 QUERY DCOUNTER command 201
MINUTES option
 DELAY command 67
 POST command 197
 ROUTE command 269
 START command 330
MMDDYY option
 FORMATTIME command 110
MMDDYYYY option
 FORMATTIME command 110
MODE operand
 DFHMSD 446
model codes (terminal) 397
MODENAME option
 GDS ALLOCATE command 118
MONITOR command 192
monitoring application performance 192
monitoring commands 10
MONTHOFYEAR option
 FORMATTIME command 110
MSR (magnetic slot reader)
 control byte values and constants 423
 DFHMSRCA, 423
MSR option
 SEND CONTROL command 293
 SEND MAP command 297
 SEND TEXT command 307
MSRCONTROL option
 ASSIGN command 27
 multi region operation (MRO) commands
 ALLOCATE 21
 BUILD ATTACH 34
 CONVERSE command 54
 EXTRACT ATTACH 97
 EXTRACT ATTRIBUTES 100
 FREE 115
 RECEIVE 238
 SEND 284
 multiple base registers 401
MUSTENTER value
 DFHMDF 436
 DFHMDI 442
 DFHMSD 448
MUSTFILL value
 DFHMDF 436
 DFHMDI 442
 DFHMSD 448

N
name argument, CICS command format 2
NAME option
 WAIT EVENT command 350
 WAIT EXTERNAL command 351
 WAITCICS command 358
named counter
 define named counter 65
 delete named counter 74
 query named counter 201
named counter server commands 10
named counter server, GET command 136
named counter server, REWIND command 263
named counter server, UPDATE command 345
NAMELENGTH option
 WEB READ command 362
 WEB READNEXT command 363
 WEB WRITE command 369
naming restriction 399
national language codes 419
NATLANG option
 SIGNON command 315
NATLANGINUSE option
 ASSIGN command 27
 SIGNON command 316
NETNAME option
 ASSIGN command 27
NETNAME option (continued)
 EXTRACT TCT command 108
 NETNAMEIDERR condition
 ALLOCATE (APPC) command 17
 new tasks, passing data to 330
 NEWPASSWORD option
 CHANGE PASSWORD command 38
 SIGNON command 316
 NEXT option
 READQ TS command 227
 NEXT value
 DFHMDI 438, 440
 NEXTTRANSID option
 ASSIGN command 28
 NLEOM option
 ROUTE command 269
 SEND MAP command 297
 SEND TEXT command 307
 NO value
 DFHMDI 439, 441
 DFHMSD 446, 448
 NOAUTOPAGE option
 SEND PAGE command 302
 NOCC option
 SPOOLOPEN OUTPUT command 321
 NOCHECK option
 START command 331
 NODE option
 SPOOLOPEN OUTPUT command 321
 NODEIDERR condition
 SPOOLOPEN OUTPUT command 322
 NODUMP option
 ABEND command 13
 NOFLUSH option
 SEND MAP command 298
 NOHANDLE option
 deactivating HANDLE CONDITION command 146
 option 5
 overriding HANDLE AID 6
 NOJBUFS condition
 WRITE JOURNALNAME command 376
 NONVAL condition
 ISSUE LOAD command 168
 NOPASSBKRD condition
 RECEIVE (non-VTAM) command 247
 NOPASSBKWR condition
 SEND (non-VTAM) command 290
 NOQUEUE option
 ALLOCATE (APPC) command 17
 ALLOCATE (LUTYPE6.1) command 19
 ALLOCATE (MRO) command 21
 GDS ALLOCATE command 118
 NOQUIESCE
 ISSUE PASS command 170
 NORM value
 DFHMDF 432
 NOSPAC condition
 DUMP TRANSACTION command 88
 REWRITE command 267
 WRITE command 373
 WRITEQ TD command 380
 WRITEQ TS command 384
 NOSPPOOL condition
 SPOOLCLOSE command 317
 SPOOLOPEN INPUT command 319
 SPOOLOPEN OUTPUT command 323
 SPOOLREAD command 325
 SPOOLWRITE command 326
 NOSTART condition
 ISSUE LOAD command 168
 NOSTG condition
 DUMP TRANSACTION command 88
 GETMAIN command 141
 SPOOLCLOSE command 317
 SPOOLOPEN INPUT command 320
 SPOOLOPEN OUTPUT command 323
 SPOOLREAD command 325
 SPOOLWRITE command 326
 NOSUSPEND option
 ALLOCATE (APPC) 17
 ALLOCATE (LUTYPE6.1) command 19
 DELETE 69
 ENQ command 92
 GETMAIN command 140
 READ command 207
 READNEXT command 214
 REAPREV command 221
 READQ TD command 225
 REWRITE command 265
 WRITE command 371
 WRITE JOURNALNAME command 375
 WRITEQ TS command 383
 NOTALLOC condition
 CONNECT PROCESS command 41
 CONVERSE (non-VTAM) command 64
 CONVERSE (VTAM) command 53
 EXTRACT ATTACH (LUTYPE6.1) command 96
 EXTRACT ATTACH (MRO) command 98
 EXTRACT ATTRIBUTES (APPC) command 99
 EXTRACT ATTRIBUTES (MRO) command 100
 EXTRACT LOGONMSG command 103
 EXTRACT PROCE command 105
 EXTRACT TCT command 108
 FREE (APPC) command 113
 FREE (LUTYPE6.1) command 114
 FREE (MRO) command 115
 FREE command 112
 ISSUE ABEND command 149
 ISSUE CONFIRMATION command 154
 ISSUE COPY (3270 display) command 155
 ISSUE COPY (3270 logical) command 156
 ISSUE DISCONNECT (LUTYPE6.1) command 158
NOTALLOC condition (continued)
ISSUE ENDFILE command 161
ISSUE ENDOUTPUT command 162
ISSUE EODS command 163
ISSUE ERASEAUP command 166
ISSUE ERROR command 167
ISSUE LOAD command 168
ISSUE PASS command 170
ISSUE PREPARE command 171
ISSUE PRINT command 172
ISSUE SIGNAL (APPC) command 181
ISSUE SIGNAL (LUTYPE6.1) command 182
POINT command 194
RECEIVE (non-VTAM) command 247
RECEIVE (VTAM) command 237
SEND (non-VTAM) command 290
SEND (VTAM) command 282
WAIT CONVID command 349
WAIT SIGNAL command 356
WAIT TERMINAL command 357

NOTAUTH condition
CANCEL command 36
CHANGE PASSWORD command 38
DELETE command 72
DELETEQ TD command 76
DELETEQ TS command 77
ENDBR command 89
HANDLE ABEND command 142
LINK command 189
LOAD command 191
READ command 210
READNEXT command 217
READPREV command 223
READQ TD command 226
READQ TS command 228
RELEASE command 254
RESETBR command 257
REWRITE command 267
SIGNON command 316
SPOOLOPEN INPUT command 320
START ATTACH command 333
START BREXIT command 334
START command 332
STARTBR command 338
UNLOCK command 344
VERIFY PASSWORD command 348
WRITE command 373
WRITE JOURNALNAME command 376
WRITEQ TD command 381
WRITEQ TS command 384
XCTL command 385

NOTFND condition (continued)
READ command 210
READNEXT command 217
READPREV command 223
RESETBR command 257
RETRIEVE command 259
REWRITE 266
SPOOLCLOSE command 317
SPOOLOPEN INPUT command 320
SPOOLOPEN OUTPUT command 323
SPOOLREAD command 325
STARTBR command 338
WEB READ command 362
WEB SEND command 367
NOTFND option
DOCUMENT RETRIEVE command 84
NOTOPEN condition
DELETE command 72
DUMP TRANSACTION command 88
READ command 210
READQ TD command 226
SPOOLCLOSE command 318
SPOOLOPEN INPUT command 320
SPOOLOPEN OUTPUT command 323
SPOOLREAD command 325
SPOOLWRITE command 326
STARTBR command 338
UNLOCK command 344
WRITE command 373
WRITE JOURNALNAME command 376
WRITEQ TD command 381
NOTOPEN option
WAIT JOURNALNAME command 353
NOTRUNCATE option
CONVERSE (non-VTAM) command 63
CONVERSE (VTAM) command 52
RECEIVE (non-VTAM) command 246
RECEIVE (VTAM) command 236
WEB RECEIVE command 364
NOWAIT option
ISSUE ADD command 152
ISSUE ERASE command 164
ISSUE REPLACE command 176
ISSUE SEND command 179
NUM value
DFHMDF 432
number value
DFHMDF 435
DFHMDI 438, 440
NUMEVENTS option
WAIT EXTERNAL command 351
WAITCICS command 358
NUMITEMS option
READQ TS command 227
WRITEQ TS command 383
NUMREC option
 DELETE command 70
 ISSUE ADD command 152
 ISSUE ERASE command 164
 ISSUE REPLACE command 176
NUMROUTES option
 WRITE OPERATOR command 378
NUMSEGMENTS option
 DUMP TRANSACTION command 87
NUMTAB option
 ASSIGN command 28

O
OBFMT operand
 DFHMDI 441
 DFHMSD 446
OCCURS operand
 DFHMDF 433
OFF value
 DFHMDF 433
 DFHMDI 440
 DFHMSD 446
OIDCARD option
 SIGNON command 316
OPCLASS option
 ASSIGN command 28
 ROUTE command 269
OPENERR condition
 DUMP TRANSACTION command 88
 SPOOLOPEN INPUT command 320
 SPOOLOPEN OUTPUT command 323
OPERID option
 HANDLE AID command 144
OPERKEYS option
 ASSIGN command 28
OPERPURGE option
 SEND PAGE command 303
OPID option
 ASSIGN command 28
OPSECURITY option
 ASSIGN command 28
options
 BMS 248, 250, 305
 length 403
OPTIONS(MAIN)
 in PL/I 400
ORGABCODE option
 ASSIGN command 28
ORGANIZATION option
 EXTRACT CERTIFICATE command 101
ORGUNITLEN option
 EXTRACT CERTIFICATE command 102
OUTDESCR option
 SPOOLOPEN OUTPUT command 321
OUTDESCRERR condition
 SPOOLOPEN OUTPUT command 323
OUTLINE option
 DFHMDF 434
 DFHMDI 441
 DFHMSD 446
OUTPARTN option
 ASSIGN command 28

P
PA1–PA3 option
 HANDLE AID command 144
PAGE option
 SPOOLWRITE command 326
PAGENUM option
 ASSIGN command 28
PAGING option
 SEND CONTROL command 294
 SEND MAP command 298
 SEND TEXT command 307
 SEND TEXT MAPPED command 309
 SEND TEXT NOEDIT command 312
partition definition macro (DFHPDI) 428, 450
partition set definition macro (DFHPSD) 428, 451
PARTN operand
 DFHMDI 441
 DFHMSD 446
PARTN option
 RECEIVE PARTN command 252
PARTNER option
 ALLOCATE(APPC) command 17
 CONNECT PROCESS command 40
 GDS ALLOCATE command 118
 GDS CONNECT PROCESS command 121
PARTNERIDERR condition
 ALLOCATE (APPC) command 17
 CONNECT PROCESS command 41
PARTNFAIL condition
 RECEIVE MAP command 249
PARTNPAGE option
 ASSIGN command 28
PARTNS option
 ASSIGN command 28
PARTNSET option
 ASSIGN command 28
PASSBK option
 RECEIVE (non-VTAM) command 247
 SEND (non-VTAM) command 290
passbook control, 2980 241
passing a session 170
passing control
 expecting return (LINK) 186
 on receipt of an AID (HANDLE AID command) 144
 on receipt of an AID (IGNORE AID) 148
 without return (XCTL) 385
passing data to new tasks 330
PASSWORD option
 CHANGE PASSWORD command 38
 SIGNON command 316
 VERIFY PASSWORD command 347
PATH option
 WEB EXTRACT command 361
PATHLENGTH option
 WEB EXTRACT command 361
PCT option
 DUMP TRANSACTION command 87
performance, application, monitoring 192
PF1–24 option
 HANDLE AID command 144
PFXLENG option
 WRITE JOURNALNAME command 375
PGMIDERR condition
 HANDLE ABEND command 143
 LINK command 189
 LOAD command 191
 RELEASE command 254
 START BSEXIT command 335
 XCTL command 386
PICIN operand
 DFHMDF 434
PICOUT operand
 DFHMDF 434
pipeline logical units 232, 274
PIPLENGTH option
 CONNECT PROCESS command 40
 EXTRACT PROCESS command 104
 GDS CONNECT PROCESS command 121
 GDS EXTRACT PROCESS command 124
PIPLIST option
 CONNECT PROCESS command 40
 EXTRACT PROCESS command 104
 GDS CONNECT PROCESS command 121
 GDS EXTRACT PROCESS command 124
PL/I language
 argument values 3
 PL/I language (continued)
 LENGTH option default 4
 PROCEDURE statement 400
 STAE option 13
 translated code 399
 POINT command 194
 POINT option
 MONITOR command 192
 pointer-ref argument, CICS command format 2
 pointer-value argument, CICS command format 2
POOL option
 DEFINE COUNTER command 65
 DEFINE DCOUNTER command 65
 DELETE COUNTER command 74
 DELETE DCOUNTER command 74
 GET COUNTER command 137
 GET DCOUNTER command 137
 QUERY DCOUNTER command 201
 QUERY COUNTER command 201
 REWIND COUNTER command 263
 REWIND DCOUNTER command 263
 UPDATE COUNTER command 346
 UPDATE DCOUNTER command 346
POP HANDLE command 195
PORTNUMBER option
 EXTRACT TCPIP command 106
PORTNUMNU option
 EXTRACT TCPIP command 106
POS operand 429
 DFHMDF 435
POST command 196
posting timer-event control area 196
PPT option
 DUMP TRANSACTION command 87
PREFIX option
 WRITE JOURNALNAME command 376
PRINCONVID option
 GDS ASSIGN command 120
PRINSYSID option
 ASSIGN command 28
 GDS ASSIGN command 120
print displayed information 406
PRINT option
 ISSUE ABORT command 150
 ISSUE END command 159
 ISSUE SEND command 179
 ISSUE WAIT command 183
 SEND CONTROL command 294
 SEND MAP command 298
 SEND MAP MAPPINGDEV command 301
 SEND TEXT command 307
 SEND TEXT NOEDIT command 312
 SPOOLOPEN OUTPUT command 322
PRINT value
 DFHMDI 438
 DFHMSD 444

Index 481
printer control character list, DFHBMSCA 421
priority of task, changing 39
PRIORITY option
 CHANGE TASK command 39
PROCESS option
 ASSIGN command 28
 BUILD ATTACH (LUTYPE6.1) command 33
 BUILD ATTACH (MRO) command 34
 EXTRACT ATTACH (LUTYPE6.1) command 95
 EXTRACT ATTACH (MRO) command 97
processing task, control delay of 67
PROCESSTYPE option
 ASSIGN command 28
PROCESSLENGTH option
 CONNECT PROCESS command 40
 EXTRACT PROCESS command 104
 GDS CONNECT PROCESS command 121
 GDS EXTRACT PROCESS command 124
PROCNAME option
 CONNECT PROCESS command 40
 EXTRACT PROCESS command 104
 GDS CONNECT PROCESS command 121
 GDS EXTRACT PROCESS command 124
PROFILE option
 ALLOCATE (APPC) command 17
 ALLOCATE (LUTYPE6.1) command 19
program control
 commands 11
 deleting loaded program 254
 LINK command options 187
 linking to another program 186
 load a program, table, or map 190
 returning program control 261
 transfer program control 385
PROGRAM option
 ASSIGN command 28
 DUMP TRANSACTION command 87
 HANDLE ABEND command 142
 ISSUE LOAD command 168
 LINK command 187
 LOAD command 190
 RELEASE command 254
 XCTL command 385
PROT value
 DFHMDF 432
PROTECT option
 START command 331
PS operand
 DFHMDF 435
 DFHMDI 441
 DFHMSD 447
PS option
 ASSIGN command 29
PSEUDOBIN option
 CONVERSE (non-VTAM) command 63
 RECEIVE (non-VTAM) command 247
PSEUDOBIN option (continued)
 SEND (non-VTAM) command 290
psid value
 DFHMDF 435
 DFHMDI 441
 DFHMSD 447
PUNCH option
 SPOOLOPEN OUTPUT command 322
PURGE MESSAGE command 199
PURGEABILITY option
 WAIT EXTERNAL command 351
 WAITCICS command 358
PUSH HANDLE command 200
Q
QBUSY condition
 READQ TD command 226
QIDERR condition
 DELETEQ TD command 76
 DELETEQ TS command 77
 QUERY SECURITY command 204
 READQ TD command 226
 READQ TS command 228
 WRITEQ TD command 381
 WRITEQ TS command 384
QNAME option
 ASSIGN command 29
 DELETEQ TS command 77
 READQ TS command 227
 WRITEQ TS command 383
QUERY COUNTER command 201
QUERY DCOUNTER command 201
QUERY SECURITY command 203
QUEUE option
 BUILD ATTACH (LUTYPE6.1) command 33
 BUILD ATTACH (MRO) command 35
 DELETEQ TD command 76
 DELETEQ TS command 77
 EXTRACT ATTACH (LUTYPE6.1) command 96
 EXTRACT ATTACH (MRO) command 98
 READQ TD command 225
 READQ TS command 227
 RETRIEVE command 258
 START command 331
 WRITEQ TD command 380
 WRITEQ TS command 383
QZERO condition
 READQ TD command 226
R
RBA option
 DELETE command 70
 READ command 207
 READNEXT command 214
RBA option (continued)
 READPREV command 221
 RESETBR command 256
 STARTBR command 337
 WRITE command 371
RDATT condition
 CONVERSE (non-VTAM) command 64
 RECEIVE (non-VTAM) command 247
 RECEIVE MAP command 249
reactivate an ABEND exit 142
read attention 57
READ command 205
READ option
 QUERY SECURITY command 203
reading records
 batch data interchange 174
 browsing, next 212
 browsing, previous (VSAM) 219
 file control 205
 from temporary storage queue 227
 from terminal or LU 403
 from transient data queue 225
READNEXT command 212
READPREV command 219
READQ TD command 225
READQ TS command 227
RECEIVE (2260) command 240
RECEIVE (2741) command 240
RECEIVE (2980) command 241
RECEIVE (3270 display) command 243
RECEIVE (3270 logical) command 231
RECEIVE (3600 BTAM) command 243
RECEIVE (3600 pipeline) command 232
RECEIVE (3600-3601) command 232
RECEIVE (3600-3614) command 233
RECEIVE (3650) command 233
RECEIVE (3735) command 244
RECEIVE (3740) command 244
RECEIVE (3767) command 234
RECEIVE (3770) command 234
RECEIVE (3790 3270-display) command 245
RECEIVE (3790 full-function or inquiry) command 235
RECEIVE (APPC) command 229
RECEIVE (LUTYPE2/LUTYPE3) command 230
RECEIVE (LUTYPE4) command 230
RECEIVE (LUTYPE6.1) command 231
RECEIVE (MRO) command 238
RECEIVE (non-VTAM) command 238
RECEIVE (System/3) command 239
RECEIVE (System/7) command 239
RECEIVE (VTAM default) command 229
RECEIVE command
 input operation without data 407
 read from terminal or logical unit 403
RECEIVE MAP command 248
RECEIVE MAP MAPPINGDEV command 250
RECEIVE PARTN command 252
RECFM option
 BUILD ATTACH (LUTYPE6.1) command 33
 BUILD ATTACH (MRO) command 35
 EXTRACT ATTACH (LUTYPE6.1) command 96
 EXTRACT ATTACH (MRO) command 98
RECORDBUSY condition
 DELETE command 72
 READ command 210
 READNEXT command 217
 READPREV command 223
 REWRITE command 267
 WRITE command 373
RECORDLENGTH option
 SPOOLOPEN OUTPUT command 322
records
 deleting VSAM 69
 reading 174, 205
 release exclusive control 343
 requesting next number 169
 updating 176, 265
 writing new 370
 writing new (adding) 152
REDUCE option
 GET COUNTER command 137
 GET DCOUNTER command 137
 register contents in assembler language 400
 relative byte address (RBA) 70
 RELEASE command 254
 RELEASE option
 SEND PAGE command 303
 relocatable expression 4
REPEATABLE option
 READ command 207
 READNEXT command 214
 READPREV command 221
REPLY option
 WRITE OPERATOR command 378
REPLYLENGTH option
 WRITE OPERATOR command 379
REQID option
 CANCEL command 36
 DELAY command 67
 ENDBR command 89
 POST command 197
 READNEXT command 215
 READPREV command 221
 RESETBR command 256
 ROUTE command 269
 SEND CONTROL command 294
 SEND MAP command 298
 SEND TEXT command 307
 SEND TEXT MAPPED command 309
 SEND TEXT NOEDIT command 312
 START command 331
REQID option (continued)
 STARTBR command 337
 WAIT JOURNALNAME command 353
 WRITE JOURNALNAME command 376
REQUESTTYPE option
 WEB EXTRACT command 361
RESCLASS option
 QUERY SECURITY command 203
RESET option
 HANDLE ABEND command 142
 reset start for browse 255
RESETBR command 255
RESID option
 QUERY SECURITY command 203
RESIDLENGTH option
 QUERY SECURITY command 203
RESOURCE option
 BUILD ATTACH (LUTYPE6.1) command 33
 BUILD ATTACH (MRO) command 35
 DEQ command 78
 ENQ command 92
 ENTER TRACENUM command 93
 EXTRACT ATTACH (LUTYPE6.1) command 96
 EXTRACT ATTACH (MRO) command 98
 resource scheduling 78
RESP
 deactivating NOHANDLE 146
 option 5
 values in EIBRESP 393
RESP and RESP2 options
 for interface to JES 8
RESP2
 EXPIRED in messages to console operators 379
 INVREQ in messages to console operators 379
 INVREQ in SIGNOFF command (Security control) 314
 INVREQ in SIGNON (Security control) 316
 INVREQ in WAIT EXTERNAL 352
 INVREQ on WAITCICS 359
 LENGERR in messages to console operators 379
 NOTAUTH in SIGNON (Security control) 316
 option 5
 USERIDERR in SIGNON (Security control) 316
 values in EIBRESP2 394
RESSEC option
 ASSIGN command 29
RESTART option
 ASSIGN command 29
RESTYPE option
 QUERY SECURITY command 203
RETAIN option
 SEND PAGE command 303
RETCODE option
 GDS ALLOCATE command 118
 GDS ASSIGN command 120
 GDS CONNECT PROCESS command 121
 GDS EXTRACT ATTRIBUTES command 123
 RETCODE option (continued)
 GDS EXTRACT PROCESS command 124
 GDS FREE command 125
 GDS ISSUE ABEND command 126
 GDS ISSUE CONFIRMATION command 127
 GDS ISSUE ERROR command 128
 GDS ISSUE PREPARE command 129
 GDS ISSUE SIGNAL command 130
 GDS RECEIVE command 131
 GDS SEND command 133
 GDS WAIT command 135
RETPAGE condition
 SEND CONTROL command 294
 SEND MAP command 299
 SEND PAGE command 303
 SEND TEXT command 308
RETRIEVE command 258
 retrieve data stored for task 258
RETURN command 261
 return program control 261
RETURNPROG option
 ASSIGN command 29
REVERSE value
 DFHMDF 433
 DFHMDI 440
 DFHMSD 446
REWIND COUNTER command 263
REWIND DCOUNTER command 263
REWRITE command 265
REWRITE option
 WRITEQ TS command 383
RDFLD option
 DELETE command 70
 ISSUE ADD command 152
 ISSUE ERASE command 164
 ISSUE NOTE command 169
 ISSUE REPLACE command 176
 READ command 207
 READNEXT command 215
 READPREV command 221
 RESETBR command 256
 STARTBR command 337
 WRITE command 371
RIGHT value
 DFHMDF 433
 DFHMDI 440
ROLLBACK option
 SYNCPOINT ROLLBACK command 342
ROLLEDBACK condition
 LINK command 189
 SYNCPOINT command 341
ROUTE command 268
ROUTECODES option
 WRITE OPERATOR command 379
RPROCESS option
 BUILD ATTACH (LUTYPE6.1) command 33
RPROCESS option (continued)
BUILD ATTACH (MRO) command 35
EXTRACT ATTACH (LUTYPE6.1) command 96
EXTRACT ATTACH (MRO) command 98

RESOURCE option
BUILD ATTACH (LUTYPE6.1) command 33
BUILD ATTACH (MRO) command 35
EXTRACT ATTACH (LUTYPE6.1) command 96
EXTRACT ATTACH (MRO) command 98

RRN option
DELETE command 70
ISSUE ADD command 152
ISSUE ERASE command 164
ISSUE NOTE command 169
ISSUE REPLACE command 176
READ command 207
READNEXT command 215
READPREV command 221
RESETBR command 256
STARTBR command 337
WRITE command 371

RTEFAIL condition
ROUTE command 270

RTERMID option
RETRIEVE command 258
START command 331

RTESOME condition
ROUTE command 270

RTRANSID option
RETRIEVE command 259
START command 331

SECONDS option (continued)
START command 331
security commands 11
SEGMENTLIST option
DUMP TRANSACTION command 87

SELNERR condition
ISSUE ABORT command 151
ISSUE ADD command 153
ISSUE END command 160
ISSUE ERASE command 165
ISSUE NOTE command 169
ISSUE QUERY command 173
ISSUE REPLACE command 177
ISSUE SEND command 180
ISSUE WAIT command 184
SEND (2260) command 286
SEND (2741) command 286
SEND (2980) command 287
SEND (3270 display) command 287
SEND (3270 logical) command 274
SEND (3600 BTAM) command 288
SEND (3600 pipeline) command 274
SEND (3600-3601) command 275
SEND (3600-3614) command 275
SEND (3650 interpreter) command 276
SEND (3650-3270) command 276
SEND (3650-3653) command 277
SEND (3650-3680) command 277
SEND (3735) command 288
SEND (3740) command 289
SEND (3767) command 278
SEND (3770) command 278
SEND (3790 3270-display) command 280
SEND (3790 3270-printer) command 280
SEND (3790 full-function or inquiry) command 279
SEND (3790 SCS) command 279
SEND (APPC) command 271
SEND (LUTYPE2/LUTYPE3) command 272
SEND (LUTYPE4) command 272
SEND (LUTYPE6.1) command 273
SEND (MRO) command 284
SEND (non-VTAM default) command 284
SEND (SCS) command 273
SEND (System/3) command 285
SEND (System/7) command 285
SEND (vtam default) command 271
SEND send asynchronous interrupt 404
SEND send write to terminal 403
SEND CONTROL command 292
SEND MAP command 295
SEND MAP MAPPINGDEV command 300
SEND PAGE command 302
SEND PARTNSET command 304
SEND TEXT command 305

S
SAA (Systems Application Architecture) communications (CPI) 411
Resource Recovery 409
SADDRLENGTH option
EXTRACT TCP/IP command 106
SAME value
DFHMDI 438, 440
schedule use of resource by task 78, 91
scheduling commands 11
SCRNHT option
ASSIGN command 29

SCRNWD option
ASSIGN command 29

SCS (SNA character string)
CONVERSE command 44
SEND (VTAM) command 279
SEND command 273

SCS printer logical unit, 3790 279

SECONDS option
DELAY command 67
POST command 197
ROUTE command 269
SEND TEXT MAPPED command 309
SEND TEXT NOEDIT command 311
sending data to output device 179
sequential retrieval, browsing
reading records 205
SERIALNUM option
EXTRACT CERTIFICATE command 102
SERIALNUMLEN option
EXTRACT CERTIFICATE command 102
SERVADDRNU option
EXTRACT TCPIP command 106
SERVERADDR option
EXTRACT TCPIP command 106
SERVERNAME option
EXTRACT TCPIP command 106
SESSBUSY condition
ALLOCATE (LUTYPE6.1) command 19
SESSION option
ALLOCATE (LUTYPE6.1) command 19
CONNECT PROCESS command 40
CONVERSE (non-VTAM) command 63
CONVERSE (VTAM) command 52
EXTRACT ATTACH (LUTYPE6.1) command 96
EXTRACT ATTACH (MRO) command 98
EXTRACT ATTRIBUTES (MRO) command 100
FREE (LUTYPE6.1) command 114
FREE (MRO) command 115
ISSUE DISCONNECT (LUTYPE6.1) command 158
ISSUE SIGNAL (LUTYPE6.1) command 182
POINT command 194
RECEIVE (non-VTAM) command 247
RECEIVE (VTAM) command 236
SEND (non-VTAM) command 290
SEND (VTAM) command 282
WAIT TERMINAL command 357
session, passing 170
SESSIONERR condition
ALLOCATE (LUTYPE6.1) command 19
EIBRCODE bytes 1-2 392
SET option
ADDRESS SET command 16
CONVERSE (non-VTAM) command 63
CONVERSE (VTAM) command 52
EXTRACT LOGONMSG command 103
GDS RECEIVE command 131
GETMAIN command 140
ISSUE RECEIVE command 174
LOAD command 190
POST command 197
READ command 207
READNEXT command 215
READPREV command 221
READQ TD command 225
READQ TS command 227
RECEIVE (non-VTAM) command 247
RECEIVE (VTAM) command 236
SET option (continued)
RECEIVE MAP command 249
RECEIVE MAP MAPPINGDEV command 251
RECEIVE PARTN command 252
RETRIEVE command 259
SEND CONTROL command 294
SEND MAP command 298
SEND MAP MAPPINGDEV command 301
SEND PAGE command 303
SEND TEXT command 307
WEB RECEIVE command 364
SHARED option
GETMAIN command 140
SIGDATA option
ASSIGN command 29
SIGNAL condition
CONVERSE (VTAM) command 53
ISSUE CONFIRMATION command 154
ISSUE DISCONNECT (default) command 157
ISSUE ERROR command 167
RECEIVE (VTAM) command 237
SEND (VTAM) command 282
WAIT SIGNAL command 356
WAIT TERMINAL command 357
SIGNOFF command 314
SIGNON command 315
single thread used with JES 319
SIT option
DUMP TRANSACTION command 87
SIZE operand
DFHMDI 441
SNAMELENGTH option
EXTRACT TCPIP command 106
SOSI operand
DFHMDF 436
DFHMDI 441
DFHMSD 447
SOSI option
ASSIGN command 29
SPCOMMAND
RESID value not valid 204
RESTYPE values 204
SPOLBUSY condition
SPOOL INPUT command 320
SPOOL OUTPUT command 323
SPOLEERR condition
SPOOL INPUT command 320
SPOOLREAD command 325
SPOOLWRITE command 327
Spool commands 11
SPOOLCLOSE command 317
SPOOLCLOSE, implicit 319
spooler, JES 6
SPOOL INPUT command 319
SPOOL OUTPUT 321
syncpoint (continued)
 establishing 341
SYNCPOINT command 341
SYNCPONT ROLLBACK command 342
syntax notation 1
SYSBUSY condition
 ALLOCATE (APPC) command 18
 ALLOCATE (LUTYPE6.1) command 19
 ALLOCATE (MRO) command 21
 EIBRCODE byte 3 392
SYSID option
 ALLOCATE (APPC) command 17
 ALLOCATE (LUTYPE6.1) command 19
 ALLOCATE (MRO) command 21
 ASSIGN command 29
 CANCEL command 36
 DELETE command 70
 DELETEQ TD command 76
 DELETEQ TS command 77, 383
 ENDBR command 89
 EXTRACT TCT command 108
 GDSALLOCATE command 118
 LINK command 188
 READ command 207
 READNEXT command 215
 READPREV command 222
 READQ TD command 226
 READQ TS command 228
 RESETBR command 256
 REWRITE command 265
 START command 331
 STARTBR command 337
 UNLOCK command 343
 WRITE command 371
 WRITEQ TD command 380
SYSIDERR condition
 ALLOCATE (APPC) command 18
 ALLOCATE (LUTYPE6.1) command 20
 ALLOCATE (MRO) command 21
 CANCEL command 37
 DELETE command 72
 DELETEQ TD command 76
 DELETEQ TS command 77
 EIBRCODE bytes 1-2 392
 ENDBR command 90
 LINK command 189
 READ command 210
 READNEXT command 217
 READPREV command 223
 READQ TD command 226
 READQ TS command 228
 RESETBR command 257
 REWRITE command 267
 START command 332
 STARTBR command 339
 UNLOCK command 344
SYSIDERR condition (continued)
 WRITE command 373
 WRITEQ TD command 381
 WRITEQ TS command 384
System/3
 CONVERSE command 55
 RECEIVE command 239
 SEND command 285
System/7
 CONVERSE command 55
 RECEIVE command 239
 SEND command 285
systemname
 definition 2, 3, 4
systemname argument, CICS command format 2

T

TABLES option
 DUMP TRANSACTION command 87
tables, loading 190
task
 initiation 330
task control commands 11
TASK option
 DUMP TRANSACTION command 87
task, abnormal termination 142
task, delay processing of 67
TASKDATALOC resource definition option 14
TASKPRIORITY option
 ASSIGN command 29
TCAM-supported terminals and logical units 404
TCP/IP services 11
TCPIPSERVICE option
 EXTRACT TCPIP command 106
tct option
 DUMP TRANSACTION command 87
TCTUA option
 ADDRESS command 15
TCTUALENG option
 ASSIGN command 30
tele typewriter
 messages 405
 programming 405
TELLERID option
 ASSIGN command 30
TEMPLATE option
 DOCUMENTINSERT command 83
temporary storage control commands 11
TERM operand
 DFHMDI 441
 DFHMSD 447
TERMCODE option
 ASSIGN command 30, 397
TERMERR condition
 CONNECT PROCESS command 41
TERMERR condition (continued)
CONVERSE (non-VTAM) command 64
CONVERSE (VTAM) command 53
ISSUE ABEND command 149
ISSUE CONFIRMATION command 154
ISSUE COPY (3270 logical) command 156
ISSUE DISCONNECT (default) command 157
ISSUE DISCONNECT (LUTYPE6.1) command 158
ISSUE EODS command 163
ISSUE ERASEAUP command 166
ISSUE ERROR command 167
ISSUE LOAD command 168
ISSUE PREPARE command 171
ISSUE PRINT command 172
ISSUE SIGNAL (APPC) command 181
ISSUE SIGNAL (LUTYPE6.1) command 182
LINK command 189
RECEIVE (non-VTAM) command 247
RECEIVE (VTAM) command 237
SEND (non-VTAM) command 290
SEND (VTAM) command 283
WAIT SIGNAL command 356
TERMID option
EXTRACT TCT command 108
ISSUE COPY (3270 display) command 155
ISSUE COPY (3270 logical) command 156
START command 331
TERMIDERR condition
ISSUE COPY (3270 display) command 155
START command 332
terminal control 403
commands 11
terminal model codes 397
terminal operator paging, initiate paging transaction 302
TERMINAL option
DUMP TRANSACTION command 87
RECEIVE MAP command 249
SEND CONTROL command 294
SEND MAP command 298
SEND TEXT command 308
SEND TEXT MAPPED command 309
SEND TEXT NOEDIT command 312
terminal type codes 397
terminate data set processing
abnormal 150
normal 159
TERMPRIORITY option
ASSIGN command 30
TEXT option
DOCUMENT INSERT command 83
WRITE OPERATOR command 379
TEXTKYBD option
ASSIGN command 30
TEXTLENGTH option
WRITE OPERATOR command 379
TEXTPRINT option
ASSIGN command 30
time of day, requesting 22
TIME option
DELAY command 67
FORMATTIME command 110
POST command 197
ROUTE command 269
START command 331
TIMEOUT option
WRITE OPERATOR command 379
timer-event control area 196
TIMESEP option
FORMATTIME command 110
TIOAPFX operand
DFHMDI 441
DFHMSD 448
TITLE option
ROUTE command 269
TO option
DOCUMENT INSERT command 83
TOLENGTH option
CONVERSE (non-VTAM) command 63
CONVERSE (VTAM) command 52
fullword alternative to TOLENGTH 403
SPOOLREAD command 324
TOKEN option
DELETE command 70
READ command 207
READNEXT 215
READPREV command 222
REWRITE command 265
SPOOLCLOSE command 317
SPOOLOPEN INPUT command 319
SPOOLOPEN OUTPUT command 322
SPOOLREAD command 324
SPOOLWRITE command 326
UNLOCK command 343
TOLENGTH option
CONVERSE (non-VTAM) command 63
CONVERSE (VTAM) command 52
fullword length alternative (TOLENGTH) 403
TRACENUM option
ENTER TRACENUM command 93
TRAILER operand
DFHMDI 441
TRAILER option
SEND PAGE command 303
SEND TEXT command 308
TRANPRIORITY option
ASSIGN command 30
transfer program control 385
TRANSID option
CANCEL command 36
LINK command 188
RETURN command 262
TRANSID option (continued)
SEND PAGE command 303
START ATTACH command 333
START BREXIT command 334
START command 331
TRANSIDERR condition
START ATTACH command 333
START BREXIT command 335
START command 332
transient data commands 12
transient data control
delete intrapartition queue 76
read data from TD queue 225
write data to TD queue 380
translated code 399
TRANS operand
DFHMDF 436
DFHMDI 442
DFHMSD 448
TRIGGER option
HANDLE AID command 144
TRIGGER value
DFHMDF 436
DFHMDI 442
DFHMSD 448
TRIGRAPH operand
DFHMSD 448
TRT option
DUMP TRANSACTION command 88
TSIOERR condition
PURGE MESSAGE command 199
SEND CONTROL command 294
SEND MAP command 299
SEND PAGE command 303
SEND TEXT command 308
SEND TEXT MAPPED command 310
SEND TEXT NOEDIT command 313
TWA option
ADDRESS command 15
TWALENG option
ASSIGN command 30
type codes (terminal) 397
TYPE operand
DFHMSD 448
TYPE option
WEB RECEIVE command 364
UNDERLINE value
DFHMDF 433
DFHMDI 440
DFHMSD 446
UNEXPIN condition
ISSUE ABORT command 151
ISSUE ADD command 153
ISSUE END command 160
ISSUE ERASE command 165
ISSUE NOTE command 169
ISSUE QUERY command 173
ISSUE RECEIVE command 175
ISSUE REPLACE command 177
ISSUE SEND command 180
ISSUE WAIT command 184
RECEIVE MAP command 249
UNLOCK command 343
UNPROT value
DFHMDF 432
UNTIL option
DELAY command 68
UPDATE COUNTER command 345
UPDATE DCOUNTER command 345
UPDATE option
QUERY SECURITY command 204
READ command 208
READNEXT 215
READPREV command 222
updating records
batch data interchange 176
file control 265
USERDATAKEY option
GETMAIN command 141
USEREXIT value
DFHMDF 436
DFHMDI 442
DFHMSD 448
USERID option
ASSIGN command 30
CHANGE PASSWORD command 38
EXTRACT CERTIFICATE command 102
SIGNON command 316
SPOOLOPEN INPUT command 319
SPOOLOPEN OUTPUT command 322
START BREXIT command 334
START command 331
VERIFY PASSWORD command 347
USERIDERR condition
CHANGE PASSWORD command 38
SIGNON command 316
START BREXIT command 335
START command 332
VERIFY PASSWORD command 348
USERNAME option
ASSIGN command 30

U
UNATTEND option
ASSIGN command 30
UNCOMMITTED
READ command 208
UNCOMMITTED option
READNEXT 215
READPREV command 222
USERPRIORITY option
 ASSIGN command 30
USING option
 ADDRESS SET command 16

V
VALIDATION option
 ASSIGN command 30
VALIDN operand
 DFHMDF 436
 DFHMDI 442
 DFHMSD 448
VALUE option
 DEFINE COUNTER command 66
 DEFINE DCOUNTER command 66
 DOCUMENT SET command 85
 GET COUNTER command 137
 GET DCOUNTER command 137
 QUERY COUNTER command 201
 QUERY DCOUNTER command 201
 UPDATE COUNTER command 346
 UPDATE DCOUNTER command 346
 WEB READ command 362
 WEB READNEXT command 363
 WEB WRITE command 369
VALUELENGTH option
 WEB READ command 362
 WEB READNEXT command 363
 WEB WRITE command 369
VERFIFY PASSWORD command 347
VERSIONLEN option
 WEB EXTRACT command 361
VIEWPOS operand
 DFHPDI 450
VIEWSZE operand
 DFHPDI 450
VOLUME option
 ISSUE ABORT command 150
 ISSUE ADD command 152
 ISSUE END command 159
 ISSUE ERASE command 164
 ISSUE NOTE command 169
 ISSUE QUERY command 173
 ISSUE REPLACE command 176
 ISSUE SEND command 179
 ISSUE WAIT command 183
VOLUMELENG option (continued)
 ISSUE ABORT command 183
 VSAM WRITE MASSINSERT
 DISABLED cannot occur 343
 NOTOPEN cannot occur 344
 terminate operation 343
 VTAB operand
 DFHMSD 449
 VTAM logon data, access to 103
W
WAIT CONVID (APPC) command 349
WAIT EVENT command 350
WAIT EXTERNAL command 351
WAIT JOURNALNAME command 353
WAIT JOURNALNUM command 355
WAIT option
 GDS SEND command 134
 ISSUE COPY (3270 display) command 155
 ISSUE COPY (3270 logical) command 156
 ISSUE ERASEAUP command 166
 RETRIEVE command 259
 SEND (non-VTAM) command 290
 SEND (VTAM) command 282
 SEND command 403
 SEND CONTROL command 294
 SEND MAP command 298
 SEND TEXT command 308
 SEND TEXT MAPPED command 309
 SEND TEXT NOEDIT command 312
 terminal control 403
 WRITE JOURNALNAME command 376
 WAIT SIGNAL command 356
 WAIT TERMINAL command 357
 general information 403
 WAITCICS command 358
 waits
 batch data interchange 183
 for event to occur 350
 terminal control operation 403
 WEB ENDBROWSE command 360
 WEB EXTRACT command 361
 WEB READ command 362
 WEB READNEXT command 363
 WEB RECEIVE command 364
 WEB RETRIEVE command 366
 WEB SEND command 367
 web services 12
 WEB STARTBROWSE command 368
 WEB WRITE command 369
WPMEDIA option
 ISSUE ABORT command 150
 ISSUE END command 159
 ISSUE SEND command 180
 ISSUE WAIT command 183
WRAP option
GET COUNTER command 137
GET DCOUNTER command 137

WRBRK condition
CONVERSE (non-VTAM) command 64
SEND (non-VTAM) command 291
SEND CONTROL command 294
SEND MAP command 299
SEND PAGE command 303
SEND TEXT command 308
SEND TEXT MAPPED command 310
SEND TEXT NOEDIT command 313
write break 57
WRITE command 370
WRITE JOURNALNAME command 375
WRITE JOURNALNUM command 377
WRITE OPERATOR command 378
 critical action 378
 eventual action 378
 immediate action 378
WRITEQ TD command 380
WRITEQ TS command 382
writing data
 to temporary storage queue 382
 to terminal or logical unit 403
 to transient data queue 380
writing records to data sets
 batch data interchange 152
 file control 370

X
XCTL command 385
XINIT operand
 DFHMD 436
XRF, generic applid 24

Y
YEAR option
 FORMATTIME command 110
YES value
 DFHMDI 439, 441
 DFHMSD 446, 448
YYDDD option
 FORMATTIME command 110
YYDDMM option
 FORMATTIME command 110
YYMMDD option
 FORMATTIME command 110
YYYYDDD option
 FORMATTIME command 110
YYYYDDMM option
 FORMATTIME command 110
YYYYMMDD option
 FORMATTIME command 110
Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

- By mail, to this address:
 Information Development Department (MP095)
 IBM United Kingdom Laboratories
 Hursley Park
 WINCHESTER, Hampshire
 SO21 2JN
 United Kingdom

- By fax:
 - From outside the U.K., after your international access code use 44–1962–870229
 - From within the U.K., use 01962–870229

- Electronically, use the appropriate network ID:
 - IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 - IBMLink™: HURSLEY(idrcf)
 - Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

- The publication number and title
- The topic to which your comment applies
- Your name and address/telephone number/fax number/network ID.